Metallurgical and Materials Transactions A

, Volume 44, Issue 6, pp 2746–2763 | Cite as

Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part I. Evolution of Microstructure and Texture

  • Chandan Mondal
  • A. K. Singh
  • A. K. Mukhopadhyay
  • K. Chattopadhyay


The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical β-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.


Texture Component Orientation Distribution Function Restoration Mechanism Al3Zr Dispersoid 7xxx Series Aluminum Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the financial support by the DRDO, Government of India. The microtexture studies were carried out using the FEG-SEM facility at the Institute Nano-Science Initiative, the Indian Institute of Science, Bangalore.


  1. 1.
    K.V. Jata, A.K. Hopkins, and R.J. Rioja: Mater. Sci. Forum, 1996, vols. 217-222, pp. 647-652.CrossRefGoogle Scholar
  2. 2.
    A.K. Vasudevan, M.A. Przystupa, and W.G. Fricke, Jr.: Scripta metall., 1990, vol. 24, pp. 1429-1434.CrossRefGoogle Scholar
  3. 3.
    M.J. Bull and D.J. Lloyd: 3rd Int. Conf. on Al-Li Alloys, C. Baker, P.J. Gregson, S.J. Harris and C.J. Peel, eds., The Institute of Metals, London, 1986, pp. 402–41.Google Scholar
  4. 4.
    J.R. Hirsch: Int. Conf. on Recrystallization in Metallic Materials (’90), T. Chandra, ed., The Minerals, Metals & Materials Society, 1990, pp. 759–68.Google Scholar
  5. 5.
    A.K. Singh, G.G. Saha, A.A. Gokhale, and R.K. Ray: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 665-675.CrossRefGoogle Scholar
  6. 6.
    S. Panchanadeeswaran, and D.P. Field: Acta metall. mater., 1995, vol. 43, pp. 1683-1692.CrossRefGoogle Scholar
  7. 7.
    J. Liu and J.G. Morris: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2029-2032.CrossRefGoogle Scholar
  8. 8.
    O. Brun, Th. Chauveau, and B. Bacroix: Mat. Sci. Technol., 1991, vol. 7, pp. 167-175.CrossRefGoogle Scholar
  9. 9.
    O. Engler, E. Sachot, J.C. Ehrström, A. Reeves, and R. Shahani: Mater. Sci. Technol., 1996, vol. 12, pp. 717-729.CrossRefGoogle Scholar
  10. 10.
    P.J. Gregson, and H.M. Flower: Acta metall., 1985, vol. 33, pp. 527-537.CrossRefGoogle Scholar
  11. 11.
    J.C. Ehrström, R. Shahani, A. Reeves, and P. Sainfort: 4th Int Conf. on Aluminium Alloys (ICAA4), T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Atlanta, Geogia Institute of Technology, vol. 2, 1994, pp. 32–39.Google Scholar
  12. 12.
    X.-H. Zeng, N.-E. Andersson, and S.Johansson: Proc. 11 th Int. Conf. Texture of Materials (ICOTOM 11), Z. Liang, L. Zuo, and Y. Chu, eds., International Academic Publishers, Beijing, 1996, p.1172.Google Scholar
  13. 13.
    B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Reading, MA (1978).Google Scholar
  14. 14.
    L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030-1033.CrossRefGoogle Scholar
  15. 15.
    H.J. McQueen, E. Evangelista, J. Bowles, and G. Crawford: Met. Sci., 1984, vol. 18, pp. 395-402.CrossRefGoogle Scholar
  16. 16.
    B. Morere, Cl. Maurice, J. Driver, and R. Shahani: Mat. Sci. Forum, 1996, vol. 217-222, pp. 517-522.CrossRefGoogle Scholar
  17. 17.
    F.J. Humphreys and P.N. Kalu: Acta metall., 1987, vol. 35, pp. 2815.CrossRefGoogle Scholar
  18. 18.
    P. Hollinshead and T. Sheppard: Metall. Trans. A, 1989, vol. 20A, pp. 1495-1507.Google Scholar
  19. 19.
    F. J. Humphreys and M. Hatherly: Recrystallization and Related Phenomena, Pergamon Press, Oxford, United Kingdom, 1995.Google Scholar
  20. 20.
    B. Ren and J.G. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 31-40.CrossRefGoogle Scholar
  21. 21.
    A. Merlini and P.A. Beck: Acta metall., 1953, vol. 1, pp. 598-606.CrossRefGoogle Scholar
  22. 22.
    X.H. Zeng, M. Ahmad, and O. Engler: Mater. Sci. Technol., 1994, vol. 10, pp. 581-591.CrossRefGoogle Scholar
  23. 23.
    W. Liu, X. Li, and X. Meng: Scripta mat., 2009, vol. 60, pp. 768-771.CrossRefGoogle Scholar
  24. 24.
    C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Scripta mat., 2011, vol. 64, pp. 446-449.CrossRefGoogle Scholar
  25. 25.
    Cl. Maurice and J.H. Driver: Mat. Sci. Forum, 1994, vol. 157–162, pp. 807–12.Google Scholar
  26. 26.
    D. Raabe: Acta metall. mater., 1995, vol. 43, pp. 1023-1028.CrossRefGoogle Scholar
  27. 27.
    T. Leffers: 15th Risø International Symposium on Materials Science, S.I. Anderson, J.B. Bilde-Sørensen, T. Lorentzen, O.B. Pedersen, and N.J. Sørensen, eds., Risø National Library, Roskilde, Denmark, 1994, p. 387.Google Scholar
  28. 28.
    P.S. Bate, Y. Huang, and F.J. Humphreys: Acta mater., 2004, vol. 52, pp. 4281-4289.CrossRefGoogle Scholar
  29. 29.
    A. Böcker, H. Klein, and H.J. Bunge, Textures and Microstructures, 1990, vol. 12, pp. 155-174.CrossRefGoogle Scholar
  30. 30.
    H. Klein and H.J.Bunge, Steel Research, 1991, vol. 62, pp.548-559.Google Scholar
  31. 31.
    J. H. Driver: Mat. Sci. Forum, 1994, vol. 157-162, pp. 585–96.CrossRefGoogle Scholar
  32. 32.
    M.Y. Huh, S.Y. Cho, and O. Engler: Mat. Sci. Engg. A, 2001, vol. A315, pp. 35-46.Google Scholar
  33. 33.
    Y. Zhou, L.S. Toth and K.W. Neale: Acta metall., 1992, vol. 40, pp. 3179-3193.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Chandan Mondal
    • 1
  • A. K. Singh
    • 1
  • A. K. Mukhopadhyay
    • 2
  • K. Chattopadhyay
    • 3
  1. 1.Structure and Failure Analysis GroupDefence Metallurgical Research LaboratoryKanchanbagh, HyderabadIndia
  2. 2.Rolling and Formability GroupDefence Metallurgical Research LaboratoryKanchanbagh, HyderabadIndia
  3. 3.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations