Metallurgical and Materials Transactions A

, Volume 44, Issue 4, pp 1947–1954 | Cite as

Progress in Indium Gallium Nitride Materials for Solar Photovoltaic Energy Conversion

Article

Abstract

The world requires inexpensive, reliable, and sustainable energy sources. Solar photovoltaic (PV) technology, which converts sunlight directly into electricity, is an enormously promising solution to our energy challenges. This promise increases as the efficiencies are improved. One straightforward method of increasing PV device efficiency is to utilize multi-junction cells, each of which is responsible for absorbing a different range of wavelengths in the solar spectrum. Indium gallium nitride (InxGa1−xN) has a variable band gap from 0.7 to 3.4 eV that covers nearly the whole solar spectrum. In addition, InxGa1−xN can be viewed as an ideal candidate PV material for both this potential band gap engineering and microstructural engineering in nanocolumns that offer optical enhancement. It is clear that InxGa1−xN is an extremely versatile potential PV material that enables several known photovoltaic device configurations and multi-junctions with theoretic efficiencies over 50 pct. This potential is driving immense scientific interest in the material system. This paper reviews the solar PV technology field and the basic properties of InxGa1−xN materials and PV devices. The challenges that remain in realizing a high-efficiency InxGa1−xN PV device are summarized along with paths for future work. Finally, conclusions are drawn about the potential for InxGa1−xN photovoltaic technology in the future.

References

  1. 1.
    J.M. Pearce: Futures, 2002, vol. 34, pp. 663-74.CrossRefGoogle Scholar
  2. 2.
    A. Jäger-Waldau: PV Status Report 2011: Research, Solar Cell Production and Market Implementation of Photovoltaics, European Commission, DG Joint Research Centre, Institute for Energy and Transport, Renewable Energy Unit, Ispra, VA, Italy. http://re.jrc.ec.europa.eu/refsys/.
  3. 3.
    K. Branker, M.J.M. Pathak, J.M. Pearce: Renew. Sust. Energ. Rev., 2011, vol. 15, pp. 4470-4482.CrossRefGoogle Scholar
  4. 4.
  5. 5.
    M.A. Green: Third Generation Photovoltaics: Advanced Solar Energy Conversion, 1st ed., Springer, Berlin, 2003.Google Scholar
  6. 6.
    M.A. Green: Third Generation Photovoltaics: Advanced Solar Energy Conversion, 2nd ed., Springer, Berlin, 2005, pp. 59-69.Google Scholar
  7. 7.
    J.M. Woodcock, H. Schade, H. Maurus, B. Dimmler, J. Springer, and A. Ricaud: in Proc. 14th European PV Solar Energy Conference, Barcelona, pp. 857–60.Google Scholar
  8. 8.
    V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, J. Graul: Phys. Status Solidi B, 2002, 229, p. R1.CrossRefGoogle Scholar
  9. 9.
    Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, Y. Nanishi: Phys. Status Solidi B, 2002, vol. 234, pp. 796-800.CrossRefGoogle Scholar
  10. 10.
    T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto: Appl. Phys. Lett., 2002, vol. 81, pp. 1246-48.CrossRefGoogle Scholar
  11. 11.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi: Appl. Phys. Lett., 2002, vol. 80, pp. 3967-69.CrossRefGoogle Scholar
  12. 12.
    J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff: J. Appl. Phys., 2003, vol. 94 (7), pp. 4457-60.CrossRefGoogle Scholar
  13. 13.
    B. Arnaudov, T. Pashkova, P.P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W.J. Schaff, H. Amano, I. Akasaki: Phys. Rev. B, 2004, vol. 69, pp. 115216-21.CrossRefGoogle Scholar
  14. 14.
    W. Walukiewicz, S.X. Li, J. Wu, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff: J. Cryst. Growth, 2004, vol. 269, pp. 119-27.CrossRefGoogle Scholar
  15. 15.
    B. Monemar, P.P. Paskov, A. Kasic: Superlatt. Microstruct., 2005, vol. 38, pp. 38-56.CrossRefGoogle Scholar
  16. 16.
    H. Morkoc, S. Strite, B.G. Gao, M.E. Lin, B. Sverdlov, M. Burns: J. Appl. Phys. Rev., 1994, vol. 76, pp. 1363-98.CrossRefGoogle Scholar
  17. 17.
    S.N. Mohammad and H. Morkoc: Prog. Quantum Electron., 1996, vol. 20, pp. 361-525.CrossRefGoogle Scholar
  18. 18.
    S.P. Denbaar: Proc. IEEE, 1997, vol. 85, pp. 1740-46.CrossRefGoogle Scholar
  19. 19.
    O. Ambacher: J. Phys. D: Appl. Phys., 1998, vol. 31, pp. 2653-2710.CrossRefGoogle Scholar
  20. 20.
    S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren: J. Appl. Phys., 1999, vol. 86, pp. 1-78.CrossRefGoogle Scholar
  21. 21.
    S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee: Mater. Sci. Eng R 2000, vol. 30, pp. 55-212.CrossRefGoogle Scholar
  22. 22.
    R.F. Davis, A.M. Roskowski, E.A. Preble, J.S. Speck, B. Heying, J.A. Feitas, E.R. Glaser Jr., W.E. Carlos: Proc. IEEE, 2002, vol. 90, pp. 993-1005.CrossRefGoogle Scholar
  23. 23.
    M. Higashiwaki, T. Inushima, T. Matsui: Phys. Status Solidi B, 2003, vol. 240, pp. 417-20.CrossRefGoogle Scholar
  24. 24.
    M.A. Reshchikov and H. Morkoc: J. Appl. Phys., 2005, vol. 97, pp. 061301-96.CrossRefGoogle Scholar
  25. 25.
    F.K. Yam and Z. Hassan: Superlatt. Microstruct., 2008, vol. 43 (1), pp. 1–23.CrossRefGoogle Scholar
  26. 26.
    Y. Pan, T. Wang, K. Shen, T. Peng, K. Wu, W. Zhang, C. Liu: J. Cryst. Growth, 2010, vol. 313, pp. 16-19.CrossRefGoogle Scholar
  27. 27.
    L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma: Nat. Mater., 2009, vol. 8, pp. 643-47.CrossRefGoogle Scholar
  28. 28.
    Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey: Nat. Mater., 2009, vol. 8 (8), pp. 648–53.CrossRefGoogle Scholar
  29. 29.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand: Appl. Phys. Lett., 2007, vol. 91, pp. 233117/1–233117/3.CrossRefGoogle Scholar
  30. 30.
    S. Keating, M.G. Urquhart, D.V.P. McLaughlin, J.M. Pearce: Cryst. Growth Des., 2011, vol. 11 (2), pp. 565–68.CrossRefGoogle Scholar
  31. 31.
    M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, A. Michael, M.C. Putnam, N.S. Lewis, and H.A. Atwater: Nano Lett., 2008, vol. 8 (2), pp. 710–14.Google Scholar
  32. 32.
    T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, C. M. Lieber: Nano Lett. 2008, vol. 8 (10), pp. 3456-60.CrossRefGoogle Scholar
  33. 33.
    H.P.T. Nguyen, Y.L. Chang, I. Shih, Z. Mi: IEEE J. Sel. Topics Quantum Electron., 2011, vol. 17 (4), pp. 1062-69.CrossRefGoogle Scholar
  34. 34.
    R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam: Appl. Phys. Lett., 2007, vol. 90, pp. 183516-19.CrossRefGoogle Scholar
  35. 35.
    A. Marti and G. Araujo: Sol. Energy Mater Sol. Cells, 1996, vol. 43, pp. 203-22.CrossRefGoogle Scholar
  36. 36.
    M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, B. Khelifa: Microelectron. J., 2007, vol. 38 (2), pp. 262–66.CrossRefGoogle Scholar
  37. 37.
    X.M. Cai, S.W. Zeng, and B.P. Zhang: Appl. Phys. Lett., 2009, vol. 95 (17), p. 173504.Google Scholar
  38. 38.
    C. Boney, I. Hernandez, R. Pillai, D. Starikov, A. Bensaoula, M. Henini, M. Syperek, J. Misiewicz, R. Kudrawiec: Physica Status Solidi (c), 2011, vol. 8, pp. 2460–62.CrossRefGoogle Scholar
  39. 39.
    L. A. Reichertz, I. Gherasoiu, K. M. Yu, V. M. Kao, W. Walukiewicz, J. W. Ager: Appl. Phys. Express, 2009, vol. 2 (12), p. 122202-1–122202-3.CrossRefGoogle Scholar
  40. 40.
    C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. DenBaars, U.K. Mishra: Appl. Phys. Lett., 2008, 93, pp. 143502-1–143502-3.CrossRefGoogle Scholar
  41. 41.
    J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, J. S. Speck: Appl. Phys. Lett., 2011, vol. 98 (13), pp. 131115-1–131115-3.CrossRefGoogle Scholar
  42. 42.
    E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.A. Al-Heji, X. Chen, R.M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch: Appl. Phys. Lett., 2011, vol. 98, pp. 021102-1–021102-3.Google Scholar
  43. 43.
    O. Jani, I. Ferguson, C. Honsberg, S. Kurtz: Appl. Phys. Lett., 2007, vol. 91, pp. 132117-1–132117-3.CrossRefGoogle Scholar
  44. 44.
    D.Y. Zhang, X.H. Zheng, L.J. Tang, J.R. Dong, H. Wang, H. Yang: IEEE Electron. Device Lett., 2010, vol. 31 (12), pp. 1422-24.CrossRefGoogle Scholar
  45. 45.
    R.Y. Horng, S.T. Lin, Y.L. Tsai, M.T. Chu, W.Y. Liao, M.H. Wu, R.M. Lin, Y.C. Lu: IEEE Electron. Device Lett., 2009, vol. 30, pp. 724-26.CrossRefGoogle Scholar
  46. 46.
    X. Zheng, R.H. Horng, D.S. Wuu, M.T. Chu, W.Y. Liao, M.H. Wu, R.M. Lin, Y.C. Lu: Appl. Phys. Lett., 2008, vol. 93, pp. 261108-1–261108-3.Google Scholar
  47. 47.
    E. Trybus, O. Jani, S. Burnham, I. Ferguson, C. Honsberg, M. Steiner, W.A. Doolittle: Phys. Status Solidi C, 2008, vol. 5 (6), pp. 1843-45.CrossRefGoogle Scholar
  48. 48.
    X. Chen, K.D. Matthews, D. Hao, W.J. Schaff, L.F. Eastman: Phys. Status. Solidi. A, 2008, vol. 205, pp. 1103-05.CrossRefGoogle Scholar
  49. 49.
    C. Boney, I. Hernandez, R. Pillai, D. Starikov, A. Bensaoula, M. Henini, M. Syperek, J. Misiewicz, and R. Kudrawiec: IEEE Phot. Spec. Conf., 2010, pp. 003316–003321.Google Scholar
  50. 50.
    R. Dahal, B. Pantha, J. Li, Y.J. Lin, H.X. Jiang: Appl. Phys. Lett., 2009, vol. 94, pp. 063505-1–063505-3.CrossRefGoogle Scholar
  51. 51.
    R. Dahal, J. Li, K. Aryal, J.Y. Lin, H.X. Jiang: Appl. Phys. Lett., 2010, vol. 97, pp. 073115-1–073115-3.Google Scholar
  52. 52.
    I.M. Pryce, D.D. Koleske, A.J. Fischer, H.A. Atwater: Appl. Phys. Lett., 2010, vol. 96 (15), pp. 153–156.CrossRefGoogle Scholar
  53. 53.
    K.Y. Lai, G.J. Lin, Y.L. Lai, Y.F. Chen, J.H. He: Appl. Phys. Lett., 2010, vol. 96 (8), pp. 081103-1–081103-3.CrossRefGoogle Scholar
  54. 54.
    M.J. Jeng, Y.L. Lee, and L.B. Chang: J. Phys. D Appl. Phys., 2009, vol. 42 (10), p. 105101.Google Scholar
  55. 55.
    Y.-J. Lee, M.-H. Lee, C.-M. Cheng, C.-H. Yang: Appl. Phys. Lett., 2011, vol. 98 (26), pp. 263504-1–263504-3.Google Scholar
  56. 56.
    A. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto: IEEE J. Photovoltaics, 2012, vol. 2, pp. 276 –93.CrossRefGoogle Scholar
  57. 57.
    Y. Kawakami, S. Suzuki, A. Kaneta, M. Funato, A. Kikuchi, and K. Kishino: Appl. Phys. Lett., 2006, vol. 89, pp. 163124-1–163124-3.Google Scholar
  58. 58.
    A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn: IEEE Trans. Electron. Devices. 2010, vol. 57 (1), pp. 79–87.CrossRefGoogle Scholar
  59. 59.
    N. Trivellin, M. Meneghini, E. Zanoni, K. Orita, M. Yuri, T. Tanaka, D. Ueda, and G. Meneghesso: IEEE International Reliability Physics Symposium, 2010, 2010, pp. 1–6.Google Scholar
  60. 60.
    D. Sizov, R. Bhat, and C.-E. Zah: J. Lightwave Technol., 2012, vol. 30 (5), pp. 679–99.CrossRefGoogle Scholar
  61. 61.
    J. W. Raring, E. M. Hall, M. C. Schmidt, C. Poblenz, B. Li, N. Pfister, D. F. Feezell, R. Craig, J. S. Speck, S. P. DenBaars, S. Nakamura: Proc. SPIE, 2010, vol. 7602, 760218.CrossRefGoogle Scholar
  62. 62.
    J. W. Raring, E. M. Hall, M. C. Schmidt, C. Poblenz, B. Li, N. Pfister, D. Kebort, Y.-C. Chang, D. F. Feezell, R. Craig, J. S. Speck, S. P. Denbaars, S. Nakamura: Proc. SPIE 2010, vol. 7686, 76860L.CrossRefGoogle Scholar
  63. 63.
    Q.A.H. Al-Naser, H.W. Hilou, and A.F. Abdulkader: ISECS International Colloquium on Computing, Communication, Control, and Management, 2009, vol. 1, pp. 373–78.Google Scholar
  64. 64.
    H. Hamzaoui, A.S. Bouazzi, B. Rezig: Sol. Energy Mater. Sol. Cells, 2005, vol. 87, pp. 595-603.CrossRefGoogle Scholar
  65. 65.
    V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Ivanov, V.A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E.E. Haller: Phys. Status Solidi B, 2002, vol. 234 (3), pp. 787-95.CrossRefGoogle Scholar
  66. 66.
    Y. Sato and S. Sato: Thin Solid Films, 1995, vol. 261, pp. 87-89.Google Scholar
  67. 67.
    S. Nishimura, K. Terashima, and H. Nagayoshi: IEEE Photo. Spec. Conf., 2005, pp. 725–27.Google Scholar
  68. 68.
    V. Fiorentini and F. Bernardini: Phys. Status Solidi B, 1999, vol. 216 (1), pp. 391-98.CrossRefGoogle Scholar
  69. 69.
    F. Bernardini and V. Fiorentini: Phys. Rev. B, 2001, vol. 64, pp. 085207/1–085207/7.CrossRefGoogle Scholar
  70. 70.
    O. Jani, C. Honsberg, Y. Huang, J.O. Song, I. Ferguson, G. Namkoong, E. Trybus, A. Doolittle, and S. Kurtz: IEEE 4th World Conference on Photovoltaic Energy Conversion: Conference Record, 2006, pp. 20–25.Google Scholar
  71. 71.
    J.J. Wierer, A.J. Fischer, D.D. Koleske: Appl. Phys. Lett., 2010, vol. 96 (5), pp. 051107-1–051107-3.CrossRefGoogle Scholar
  72. 72.
    Y. Nanishi, Y. Saito, T. Yamaguchi: Jpn. J. Appl. Phys., 2003, vol. 15 (42), pp. 2549–59.CrossRefGoogle Scholar
  73. 73.
    J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, S. Kurtz: J. Appl. Phys., 2003, vol. 94 (10), 6477-82.CrossRefGoogle Scholar
  74. 74.
    T. Yamaguchi, C. Morioka, K. Mizuo, M. Hori, T. Araki, Y. Nanishi, and A. Suzuki: IEEE International Symposium on Compound Semiconductors: Post-Conference Proceedings, 2003, pp. 214–19.Google Scholar
  75. 75.
    C. Yang: Phys. Status Solidi A, 2007, vol. 204(12), pp. 4288–91.CrossRefGoogle Scholar
  76. 76.
    O. Jani, B. Jampana, M. Mehta, M. Yu, I. Ferguson, R. Opila, and C. Honsberg: 33rd IEEE Photovoltaic Specialists Conference, 2008, pp. 1–4.Google Scholar
  77. 77.
    S.W. Zeng, B.P. Zhang, J.W. Sun, J.F. Cai, C. Chen, J.Z. Yu: Semicond. Sci. Technol., 2009, vol. 24, 055009.CrossRefGoogle Scholar
  78. 78.
    B. W. Liou: Thin Solid Films, 2011, vol. 520 (3), pp. 1084–90.CrossRefGoogle Scholar
  79. 79.
    F.R. Hu, K. Ochi, Y. Zhao, K. Hane: Phys. Status Solidi C, 2007, vol. 4, pp. 2338-41.CrossRefGoogle Scholar
  80. 80.
    H.M. Kim, H. Lee, S.I. Kim, S.R. Ryu, T.W. Kang, K.S. Chung: Phys. Status Solidi B, 2004, vol. 241, pp. 2802-05.CrossRefGoogle Scholar
  81. 81.
    T. Kuykendall, P. Ulrich, S. Aloni, P. Yang: Nat. Mater., 2007, vol. 6, pp. 951-56.CrossRefGoogle Scholar
  82. 82.
    K.M. Wu, Y. Pan, C. Liu: Appl. Surf. Sci., 2009, vol. 255 (13–14), pp. 6705-09.CrossRefGoogle Scholar
  83. 83.
    H. Sekiguchi, T. Nazakato, A. Kikuchi, K. Kishino: J. Cryst. Growth, 2007, vol. 300 (1), pp. 259-62.CrossRefGoogle Scholar
  84. 84.
    A. Kikuchi, K. Yamano, M. Tada, K. Kishino: Phys. Status Solidi B, 2004, vol. 241 (12), pp. 2754-58.CrossRefGoogle Scholar
  85. 85.
    A.P. Vajpeyi, A.O. Ajagunna, K. Tsagaraki, M. Androulidaki, and A. Georgakilas: Nanotechnology, 2009, vol. 20 (32), 325605.Google Scholar
  86. 86.
    X.M. Cai, F. Ye, S.Y. Jing, D.P. Zhang, P. Fan, E.Q. Xie: J. Alloy Compd., 2009, vol. 467 (1-2), pp. 472-76.CrossRefGoogle Scholar
  87. 87.
    H.M. Kim, Y.C. Cho, D.Y. Kim, T.Y. Kang, and K.S. Chung: AIP Conference Proceedings, 2005, vol. 772 (1), pp. 1515–16.Google Scholar
  88. 88.
    M. Einav, D.V.P. McLaughlin, and J.M. Pearce: ISPlasma 2011 Proceedings, 2011, P3-087A-LN.Google Scholar
  89. 89.
    D.V.P. McLaughlin and J.M. Pearce: Mater. Sci. Eng. B, 2012, vol. 177 (2), pp. 239-44.CrossRefGoogle Scholar
  90. 90.
    E. Calleja, M.A. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog: Phys. Rev. B, 2000, vol. 62 (24), pp. 16826-34.CrossRefGoogle Scholar
  91. 91.
    E.A. Stach, P.J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang: Nano Lett., 2003, vol. 3, pp. 867-69.CrossRefGoogle Scholar
  92. 92.
    Y. Wu and P.J. Yang: Am. Chem. Soc., 2001, vol. 123, pp. 3165-6.CrossRefGoogle Scholar
  93. 93.
    T. Kuykendall, P. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang: Nat. Mater., 2004, vol. 3 (8), pp. 524-28.CrossRefGoogle Scholar
  94. 94.
    J. Ristić, M.A. Sanchez-Garcia, E. Calleja, J. Sanchez-Paramo, J.M. Calleja, U. Jahn, K.H. Ploog: Phys. Status Solidi A, 2002, vol. 192, pp. 60-66.CrossRefGoogle Scholar
  95. 95.
    S. Guha, N.A. Bojarczuk, M.A.L. Johnson, J.F. Schetzina: Appl. Phys. Lett., 1999, vol. 75, pp. 463-65.CrossRefGoogle Scholar
  96. 96.
    T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki: Jpn. J. Appl. Phys., 1997, vol. 36, L177-79.CrossRefGoogle Scholar
  97. 97.
    M. Leszczynski, R. Czernecki, S. Krukowski, M. Krysko, G. Targowski, P. Prystawko, J. Plesiewicz, P. Perlin, T.J. Suski: J. Cryst. Growth, 2011, vol. 318, pp. 496-99.CrossRefGoogle Scholar
  98. 98.
    M. Gartner, C. Kruse, M. Modreanu, A. Tausendfreund, C. Roder, D. Hommel: Appl. Surf. Sci, 2006, vol. 253 (1), pp. 254-57.CrossRefGoogle Scholar
  99. 99.
    C.A. Parker, J.C. Robers, S.M. Bedair, M.J. Reed, S.X. Liu, N.A. El-Masry: Appl. Phys. Lett., 1999, vol. 75 (18), pp. 2776-78.CrossRefGoogle Scholar
  100. 100.
    N. Faleev, B. Jampana, O. Jani, H. Yu, R. Opila, I. Ferguson, C. Honsberg: Appl. Phys. Lett., 2009, vol. 95 (5), pp. 051915-1–051915-3.CrossRefGoogle Scholar
  101. 101.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura: Appl. Phys. Lett., 1997, vol. 70 (21), pp. 2822-24.CrossRefGoogle Scholar
  102. 102.
    L.S. Chuah, Z. Hassan, H.A. Hassan: Microelectron. Int., 2008, vol. 25 (2), pp. 3-8.CrossRefGoogle Scholar
  103. 103.
    X. Sun, W.B. Liu, D.S. Jiang, Z.S. Liu, L.L. Wang, H. Wang, J.J. Zhu, L.H. Duan, Y.T. Wang, D.G. Zhao, S.M. Zhang, H.J. Yang: Phys. D Appl. Phys., 2008, vol. 41, 165108.CrossRefGoogle Scholar
  104. 104.
    M.R. Correia, S. Pereira, E. Alves, B. Arnaudov: Superlattice Microstruct., 2006, vol. 40 (4–6), pp. 452-57.CrossRefGoogle Scholar
  105. 105.
    C.A. Chang, T.Y. Tang, P.H. Chang, N.C. Chen, C.T. Liang: Jpn. J. Appl. Phys., 2007, vol. 46 (5A), pp. 2840-43.CrossRefGoogle Scholar
  106. 106.
    A. Sohmer, J. Off, H. Bolay, V. Harle, V. Syganow, J.S. Im, V. Wagner, F. Adler, A. Hangleiter, A. Dornen, F. Scholz, D. Brunner, O. Ambacher, and H. Lakner: MRS Int. J. N. S. R., 1997, vol. 2 (13–15), p. 14.Google Scholar
  107. 107.
    O. Husberg, A. Khartchenko, D.J. As, K. Lischka, E. Silveira, O.C. Noriega, J.R.L. Fernandez, and J.R. Leite: Phys. Status Solidi C, 2003, vol. 0 (1), pp. 293–97.Google Scholar
  108. 108.
    O. Husberg, A. Khartchenko, D.J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O.C. Noriega, A. Tabata, J.R. Leite: Appl. Phys. Lett., 2001, vol. 79 (9), pp. 1243-45.CrossRefGoogle Scholar
  109. 109.
    D.G. Pacheco-Salazar, J.R. Leite, F. Cerdeira, E.A. Meneses, S.F. Li, D.J. As, K. Lischka: Semicond. Sci. Technol., 2006, vol. 21 (7), pp. 846-51.CrossRefGoogle Scholar
  110. 110.
    P. Waltereit, O. Brandt, K.H. Ploog, M.A. Tagliente, L. Tapfer: Phys. Status Solidi B, 2001, vol. 228 (1), pp. 49-53.CrossRefGoogle Scholar
  111. 111.
    P. Schley, R. Goldhahn, A.T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, H. Lu, W.J. Schaff, M. Kurouchi, Y. Nanishi, M. Rakel, C. Cobet, and N. Esser: Phys. Rev. B, 2007, vol. 75 (20), p. 205204.Google Scholar
  112. 112.
    M. Horie, K. Sugita, A. Hashimoto, A. Yamamoto: Sol. Energy Mater. Sol. C., 2009, vol. 93, pp. 1013-15.CrossRefGoogle Scholar
  113. 113.
    R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff: Phys. Rev. Lett., 2006, vol. 96 (12), p. 125505-08.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada
  2. 2.Departments of Materials Science & Engineering and Electrical & Computer EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations