Metallurgical and Materials Transactions A

, Volume 44, Issue 6, pp 2487–2498 | Cite as

Precipitate Size in the Superalloy IN738LC During Compression Creep

  • Arun Altincekic
  • Ercan BalikciEmail author


Superalloys are high-temperature materials that are used widely in many industries especially in several engine components in gas turbines. One of the many nickel-base superalloys is IN738LC, which possesses a good high-temperature strength and hot corrosion resistance. It is employed mainly in nozzle guide vanes and blades of land-based turbines. The strengthening is provided mainly by coherent γ′ precipitates. The current research is undertaken to determine precipitate size in IN738LC specimens aged under compressive stress. To observe the influence of magnitude of stress, a constant compressive load is applied to conical specimens that are aged in an inert atmosphere for various times [24, 192, 480, and 960 hours at 1223 K (950 °C) and 12, 24, 192, and 480 hours at 1323 K (1050 °C)]. Thus, the study of microstructural changes due to various stress levels becomes possible with a single specimen in the same experimental condition. A single-size distribution of precipitates has been observed except for the 192-hour and 480-hour experiments at 1323 K (1050 °C). The results indicate that the average precipitate size is directly proportional to the temperature but inversely proportional to the applied stress, although in some specimens, maximum size is observed at medium-stress levels. Strain becomes effective at most severely crept specimen by causing a merging of precipitates. Raft degeneration is also observed in this specimen. The growth exponent is found to vary with stress and temperature between 2.97 and 3.78.


Aging Time Creep Deformation Fine Precipitate Precipitate Size Growth Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support for this work by Bogazici University Scientific Research Projects (BAP) under Grant No. 08A601. Sincere appreciations go to Mr. Levent Şavkay from MARES Engineering, Istanbul, Turkey, for his efforts in developing a creep testing system.


  1. 1.
    M. Durand-Charre: The Microstructure of Superalloys, Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1997.Google Scholar
  2. 2.
    R.C. Reed: The Superalloys-Fundamentals and Applications, Cambridge University Press, New York, NY, 2006.Google Scholar
  3. 3.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel, Eds.: Superalloys II–High- Temperature Materials for Aerospace and Industrial Power, Wiley, New York, NY, 1987.Google Scholar
  4. 4.
    The Nickel Producers Environmental Research Association (NIPERA): Alloy IN-738 Technical Data,, July 2012.
  5. 5.
    E. Balikci: Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, 1998.Google Scholar
  6. 6.
    C.G. Bieber and J.J. Galka: U.S. Patent No. 3,459,545, Aug. 5, 1969.Google Scholar
  7. 7.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, New York, NY, 1992.Google Scholar
  8. 8.
    I.M. Lifshitz and V.V. Sloyozov, J. Phys. Chem. Solids, 1961, vol. 19 (1–2), pp. 35–50.CrossRefGoogle Scholar
  9. 9.
    C. Wagner: Z. Elektrochemie, 1961, vol. 65 (7–8), pp. 581–91.Google Scholar
  10. 10.
    L. Ratke and P.W. Voorhees: Growth and Coarsening: Ostwald Ripening in Material Processing, Springer-Verlag, Berlin, Germany, 2002.Google Scholar
  11. 11.
    M. Doi: Mater. Trans., 1992, vol. 33 (7), pp. 637–49.Google Scholar
  12. 12.
    A.J. Ardell: Acta Metall., 1972, vol. 20 (1), pp. 61–71.CrossRefGoogle Scholar
  13. 13.
    A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27 (3), pp. 489–97.CrossRefGoogle Scholar
  14. 14.
    C.K.L. Davies, P. Nash, and R.N. Stevens. Acta Metall., 1980, vol. 28 (2), pp. 179–89.Google Scholar
  15. 15.
    S.V. Prikhodko and A.J. Ardell: Acta Mater., 2003, vol. 51 (17), pp. 5001–12.CrossRefGoogle Scholar
  16. 16.
    A. Ges, O. Fornaro, and H. Palacio: J. Mater. Sci., 1997, vol. 32 (14), pp. 3687–91.CrossRefGoogle Scholar
  17. 17.
    P.K. Footner and B.P. Richards: J. Mater. Sci., 1982, vol. 17 (7), pp. 2141–53.CrossRefGoogle Scholar
  18. 18.
    H. Furukawa: Adv. Phys., 1985, vol. 34 (6), pp. 703–50.CrossRefGoogle Scholar
  19. 19.
    A.J. Ardell and V. Ozolins: Nat. Mater., 2005, vol. 4, pp. 309–16.CrossRefGoogle Scholar
  20. 20.
    S.V. Prikhodko and A.J. Ardell: Acta Mater., 2003, vol. 51 (17), pp. 5021–36.CrossRefGoogle Scholar
  21. 21.
    S.V. Prikhodko and A.J. Ardell: Acta Mater., 2003, vol. 51 (17), pp. 5013–19.CrossRefGoogle Scholar
  22. 22.
    N.V. Starostina, S.V. Prikhodko, A.J. Ardell, and S. Prasad: Mater. Sci. Eng. A, 2005, vol. 397 (1–2), pp. 264–70.Google Scholar
  23. 23.
    J. Li and R.P. Wahi: Acta Metall. Mater., 1995, vol. 43 (2), pp. 507–17.CrossRefGoogle Scholar
  24. 24.
    J.W. Cahn: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 166–80.Google Scholar
  25. 25.
    J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2007, vol. 457, pp. 148–55.CrossRefGoogle Scholar
  26. 26.
    T. Link, A. Epishin, and B. Fedelich: Philos. Mag., 2009, vol. 89 (13), pp. 1141–59.CrossRefGoogle Scholar
  27. 27.
    F.Z. Sierra, D. Narzary, C. Bolaina, J.C. Han, J. Kubiak, and J. Nebradti: Heat Transfer and Thermal Mechanical Stress Distributions in Gas Turbine Blades, Presented at ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, June 8–12, 2009.Google Scholar
  28. 28.
    N. Miura, K. Nakata, M. Miyazaki, Y. Hayashi, and Y. Kondo: Mater. Sci. Forum, 2010, vols. 638–642, pp. 2291–96.Google Scholar
  29. 29.
    A.K. Dwarapureddy, E. Balikci, S. Ibekwe, and A. Raman: J. Mater. Sci., 2008, vol. 43 (6), pp. 1802–10.CrossRefGoogle Scholar
  30. 30.
    E. Balikci, R.A. Mirshams, and A. Raman: J. Mater. Eng. Perform., 2000, vol. 9 (3), pp. 324–29.CrossRefGoogle Scholar
  31. 31.
    E. Balikci and D. Erdeniz: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1391–98.CrossRefGoogle Scholar
  32. 32.
    E. Balikci, R.A. Mirshams, and A. Raman: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1993–2003.CrossRefGoogle Scholar
  33. 33.
    E. Balikci, R.A. Mirshams, and A. Raman: Z. Metallkd., 1999, vol. 90 (2), pp. 132–40.Google Scholar
  34. 34.
    E. Balikci and A. Raman: J. Mater. Sci., 2000, vol. 35 (14), pp. 3593–97.CrossRefGoogle Scholar
  35. 35.
    E. Balikci and A. Raman: J. Mater. Sci., 2008, vol. 43 (3), pp. 927–32.CrossRefGoogle Scholar
  36. 36.
    I. Roy, E. Balikci, S. Ibekwe, and A. Raman: J. Mater. Sci., 2005, vol. 40 (23), pp. 6207–15.CrossRefGoogle Scholar
  37. 37.
    E. Balikci, R.E. Ferrell, Jr., and A. Raman: Z. Metallkd., 1999, vol. 90 (2), pp. 141–46.Google Scholar
  38. 38.
    R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1999, vol. 15, no. 12, pp. 1387–94.CrossRefGoogle Scholar
  39. 39.
    N. El-Bagoury, M. Waly, and A. Nofal: Mater. Sci. Eng. A, 2007, vol. 487, nos. 1–2, pp. 152–61.Google Scholar
  40. 40.
    R.S. Moshtaghin and S. Asgari: Mater. Des., 2003, vol. 24 (5), pp. 325–30.CrossRefGoogle Scholar
  41. 41.
    S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A, 2007, vol. 498 (1–2), pp. 266–71.Google Scholar
  42. 42.
    M. Ignat, J.Y. Buffiere, and J.M. Chaix: Acta Metall. Mater., 1993, vol. 41 (3), pp. 855–62.CrossRefGoogle Scholar
  43. 43.
    A. Epishin, T. Link, H. Klingelhöffer, B. Fedelich, U. Brückner, and P.D. Portella: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 262–65.Google Scholar
  44. 44.
    X.W. Li, Y.M. Hu, and Z.G. Wang: Mater. Sci. Eng. A, 1998, vol. 248, pp. 299–303.CrossRefGoogle Scholar
  45. 45.
    C. Buque, J. Bretschneider, A. Schwab, and C. Holste: Mater. Sci. Eng. A, 2001, vol. 300, pp. 254–62.CrossRefGoogle Scholar
  46. 46.
    A. Epishin, T. Link, and G. Nolze: J. Microsc., 2007, vol. 228, pp. 110–17.CrossRefGoogle Scholar
  47. 47.
    W.S. Rasband: ImageJ, U.S. National Institutes of Health, Bethesda, MD, 1997–2007.
  48. 48.
    A. Altincekic: MSc. Thesis, Bogazici University, Istanbul, Turkey, 2011.Google Scholar
  49. 49.
    D. Mclean: Met. Sci., 1984, vol. 18, pp. 249–56.Google Scholar
  50. 50.
    J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser: Acta Mater., 2009, vol. 57 (8), pp. 2538–49.CrossRefGoogle Scholar
  51. 51.
    A.J. Ardell and V. Ozolins: Nat. Mater., 2005, vol. 4, pp. 309–16.CrossRefGoogle Scholar
  52. 52.
    A.M. Ges, O. Fornaro, and H.A. Palacio: Mater. Sci. Eng. A, 2007, vol. 458, pp. 96–100.CrossRefGoogle Scholar
  53. 53.
    J. Safari, S. Nategh, and M. McLean: Mater. Sci. Technol., 2006, vol. 22 (8), pp. 888–98.CrossRefGoogle Scholar
  54. 54.
    W.C. Johnson: Metall. Trans. A, 1987, vol. 18A, pp. 233–47.Google Scholar
  55. 55.
    P.W. Voorhees and W.C. Johnson: J. Chem. Phys., 1986, vol. 84 (9), pp. 5108–21.CrossRefGoogle Scholar
  56. 56.
    C. Ahn, N. Bennett, S.T. Dunham, and N.E.B. Cowern: Phys. Rev. B, 2009, vol. 79 (7), pp. 073201-1–073201-4.Google Scholar
  57. 57.
    F. Li and A.J. Ardell: J. Phase Equilib., 1998, vol. 19 (4), pp. 334–39.CrossRefGoogle Scholar
  58. 58.
    R.D. Vengrenovich, Y.V. Gudyma, and S.V. Yarema: Phys. Met. Metallogr., 2001, vol. 91 (3), pp. 228–32.Google Scholar
  59. 59.
    Y.M. Ustguyov: Phys. Met. Metallogr., 2007, vol. 104 (5), pp. 453–60.CrossRefGoogle Scholar
  60. 60.
    J.X. Zhang, H. Harada, Y. Koizumi, and T. Kobayashi: J. Mater. Sci., 2010, vol. 45 (2), pp. 523–32.CrossRefGoogle Scholar
  61. 61.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, NY, 1996.Google Scholar
  62. 62.
    M. Doi, T. Miyazaki, and T. Wakatsuki: Mater. Sci. Eng., 1984, vol. 67 (2), pp. 247–53.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations