Metallurgical and Materials Transactions A

, Volume 44, Issue 5, pp 2226–2232 | Cite as

Boride Zone Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures

  • S. Steuer
  • R. F. Singer


Two nickel-base superalloys are joined via transient liquid phase (TLP) bonding with boron as the MPD. Boride formation is observed in the parent materials at some distance from the solid/liquid interface. The boron concentration profile over the joint is measured with glow discharge optical emission spectroscopy (GDOES). Boron concentration peaks are observed corresponding to the boride formation. Boron distribution is discussed on the basis of theoretical predictions in the literature. It is concluded that diffusion of another element is necessary to explain the results with the second element influencing the solubility of boron.


Boron Boride Parent Material Boron Concentration Diffusion Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the DFG research group (Graduiertenkolleg) 1229 “Stable and metastable multiphase systems for high temperature applications” and the DFG collaborative research center SFB/Transregio 103 “Superalloy single crystals—From atoms to turbine blades” for financial support of part of this work.


  1. 1.
    D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J., 1974, vol. 53 (4), pp. 203–14.Google Scholar
  2. 2.
    K. Nishimoto, K. Saida, D. Kim, and Y. Nakao: ISIJ Int., 1995, vol. 35 (10), pp. 1298–1306.CrossRefGoogle Scholar
  3. 3.
    A. Schnell, A. Stankowski, and E. deMarcos: Proc. ASME Turbo Expo, 2006, vol. 4, pp. 949–61.Google Scholar
  4. 4.
    A. Schnell: Ph.D. Dissertation, Ecole Polytechnique Federal de Lausanne, Lausanne, Austria, 2004.Google Scholar
  5. 5.
    R. Aluru, S.V. Chitti, N. Sofyan, R.D. Love, J.W. Fergus, and W.F. Gale: Mater. Sci. Technol., 2008, vol. 24 (5), pp. 517–28.CrossRefGoogle Scholar
  6. 6.
    J.D. Liu, T. Jin, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Forum, 2007, vols. 546–549, pp. 1245–48.Google Scholar
  7. 7.
    M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloys Compd., 2008, vol. 461, pp. 341–47.CrossRefGoogle Scholar
  8. 8.
    T. Li, Q.Y. Wang, A.Q. Wang, Z.X. Wen, and Z.F. Yue: Key Eng. Mater., 2005, vols. 297–300, pp. 1489–94.Google Scholar
  9. 9.
    C.E. Campbell and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2835–3847.CrossRefGoogle Scholar
  10. 10.
    S. Steuer and R.F. Singer: unpublished research.Google Scholar
  11. 11.
    M.K. Dinkel, P. Heinz, F. Pyczak, A. Volek, M. Ott, E. Affeldt, A. Vossberg, M. Göken, and R.F. Singer: Proc. Superalloys, 2008, pp. 211–20.Google Scholar
  12. 12.
    Ake Jansson: ThermoCalc Support, Sweden, private communication, 2012.Google Scholar
  13. 13.
    D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., Taylor and Francis Group, Boca Raton, FL, 2009, pp. 76–80.Google Scholar
  14. 14.
    H. Oettel and H. Schumann: Metallografie, 15th ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011, pp. 353–358.Google Scholar
  15. 15.
    R. Bürgel: Handbuch Hochtemperatur-Werkstofftechnik, 3rd ed., Vieweg & Sohn, Weinheim, Germany, 2000.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Institute of Science and Technology of Metals, Department of Materials Science and EngineeringUniversity of ErlangenErlangenGermany

Personalised recommendations