Metallurgical and Materials Transactions A

, Volume 44, Issue 5, pp 2243–2257 | Cite as

Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo-Si-B Alloys

  • S. MajumdarEmail author
  • D. Schliephake
  • B. Gorr
  • H.-J. Christ
  • M. Heilmaier


The oxidation behavior of 0.2 Y-alloyed Mo-9Si-8B (at. pct) was investigated in a wide temperature range from 923 K to 1673 K (650 °C to 1400 °C). Formation of a thin yttrium-silicate scale at the outer layer along with the thick silica-rich inner layer containing Y-rich oxide inclusions was detected beyond 1573 K (1300 °C). A substantial improvement in the oxidation resistance of the alloy could be realized at 1073 K to 1273 K (800 °C to 1000 °C) with the addition of yttrium. The formation of a viscous silica-rich protective scale could prevent the permeation of MoO3 at the initial stages of oxidation at this temperature regime. The growth of the internal oxidation zone followed a parabolic rate at 1273 K to 1673 K (1000 °C to 1400 °C), and the activation energy values calculated for both the outer oxide scale and internal oxidation zone formation indicated the inward diffusion of oxygen as the dominant rate controlling mechanism. The microstructural and kinetic data obtained for internal and external oxidation indicate that yttrium-silicate scale reduces the inward diffusion of oxygen, thereby improving the oxidation resistance of the alloy at high temperatures in any oxidizing environment.


MoO3 Oxide Scale Oxidation Behavior Internal Oxidation Energy Dispersive Spectrometry Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. Majumdar wishes to thank the Alexander von Humboldt foundation, Bonn, for financial support of the research stay at Siegen. The research support by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the research unit 727 “Beyond Ni-Base Superalloys” is gratefully acknowledged.


  1. 1.
    J. H. Perepezko: Science, 2009, vol. 20, pp. 1068-69.CrossRefGoogle Scholar
  2. 2.
    M. Heilmaier, M. Kruger, H. Saage, J. Rosler, D. Mukherji, U. Glatzel, R. Volkl, R. Huttner, G. Eggeler, Ch. Somsen, T. Depka, H. –J. Christ, B. Gorr, and S. Burk: J. Metals, 2009, vol. 67, pp. 61-67.Google Scholar
  3. 3.
    E. W. Lee, J. Cook, A. Khan, R. Mahapatra, and J. Waldman: J. Metals, 1991, vol. 43, pp. 54-57.Google Scholar
  4. 4.
    J. Cook, A. Khan, E. W. Lee, and R. Mahapatra: Mater. Sci. Eng. A, 1992, vol. 155, pp. 183-98.CrossRefGoogle Scholar
  5. 5.
    P. J. Meschter: Metall. Trans. A, 1992, vol. 23A, pp. 1763-72.Google Scholar
  6. 6.
    A. K. Vasudevan, and J. J. Petrovic: Mater. Sci. Eng. A, 1992, vol. 155, pp. 1-17.CrossRefGoogle Scholar
  7. 7.
    D.M. Berczik: U.S. Patent No. 5.693.156, 1997.Google Scholar
  8. 8.
    D.M. Berczik: U.S. Patent No. 5.695.616, 1997.Google Scholar
  9. 9.
    M. K. Meyer, and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2763-66.CrossRefGoogle Scholar
  10. 10.
    M. K. Meyer, and M. Akinc: J. Am. Ceram. Soc., 1996, vol. 79, pp. 938-45.CrossRefGoogle Scholar
  11. 11.
    M. K. Meyer, A. J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153-62.CrossRefGoogle Scholar
  12. 12.
    V. Supatarawanich, D. R. Johnson, and C. T. Liu: Mater. Sci. Eng. A, 2003, vol. 344, pp. 328-39.CrossRefGoogle Scholar
  13. 13.
    T. A. Parthasarathy, M. G. Mendiratta, and D. M. Dimiduk: Acta Mater., 2002, vol. 50, pp. 1857-68.CrossRefGoogle Scholar
  14. 14.
    V. Supatarawanich, D. R. Johnson, and C. T. Liu: Intermetallics, 2004, vol. 12, pp. 721-25.CrossRefGoogle Scholar
  15. 15.
    M. G. Mendiratta, T. A. Parthasarathy, and D. M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225-32.CrossRefGoogle Scholar
  16. 16.
    P. Sharma, R. Mitra, and S. K. Roy: Intermetallics, 2007, vol. 15, pp. 1217-27.CrossRefGoogle Scholar
  17. 17.
    S. Burk, B. Gorr, V. B. Trindade, and H. -J. Christ: Oxid. Met., 2010, vol. 73, pp. 163-81.CrossRefGoogle Scholar
  18. 18.
    J. M. Francis, and W. H.Whitlow: Corrosion Sci., 1965, vol. 5, pp. 701-10.CrossRefGoogle Scholar
  19. 19.
    J. K. Tien, and F. S. Petit: Metall. Trans. A, 1972, vol. 3A, pp. 1587-99.Google Scholar
  20. 20.
    A. Kumar, M. Nasrallah, and D. L. Douglass: Oxid. Met., 1974, vol. 8, pp. 227-63.CrossRefGoogle Scholar
  21. 21.
    B. A. Pint: Oxid. Met., 1998, vol. 49, pp. 531-60.CrossRefGoogle Scholar
  22. 22.
    N. Hiramatsu, and F. H. Stott: Oxid. Met., 1999, vol. 51, pp. 479-94.CrossRefGoogle Scholar
  23. 23.
    B. A. Pint: J. Am. Ceram. Soc., 2003, vol. 86, pp. 686-95.CrossRefGoogle Scholar
  24. 24.
    B. A. Pint: Oxid. Met., 1996, vol. 45, pp. 1-37.CrossRefGoogle Scholar
  25. 25.
    T. J. Nijdam, and W. G. Sloof: Acta Mater., 2007, vol. 55, pp. 5980-87.CrossRefGoogle Scholar
  26. 26.
    D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser, W. J. Quadakkers: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2974-83.CrossRefGoogle Scholar
  27. 27.
    D. P. Whittle, and J. Stringer: Philos. Trans. Royal Soc. London, 1980, vol. 295, pp. 309-29.CrossRefGoogle Scholar
  28. 28.
    E. J. Opila: J. Am. Ceram. Soc., 1999, vol. 82, pp. 625-36.CrossRefGoogle Scholar
  29. 29.
    E. J. Opila, J. L. Smialek, R. C. Robinson, D. S. Fox, and J. S. Jacobson: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1826-34.CrossRefGoogle Scholar
  30. 30.
    J. Schneider, K. Biswas, G. Rixecker, and F. Aldinger: J. Am. Ceram. Soc., 2003, vol. 86, pp. 501-07.CrossRefGoogle Scholar
  31. 31.
    Y. Q. Wang, J. F. Huang, Z. H. Chen, and L. Y. Cao: J. Composite Mater., 2012, vol. 46, pp. 371-82.CrossRefGoogle Scholar
  32. 32.
    J. F. Huang, H. J. Li, X. R. Zeng, K. Z. Li, X. B. Xiong, and M. Huang: Carbon, 2004, vol. 42, pp. 2356-59.CrossRefGoogle Scholar
  33. 33.
    J. F. Huang, H. J. Li, X. R. Zeng, and K. Z. Li: Ceram. Int., 2006, vol. 32, pp. 417-21.CrossRefGoogle Scholar
  34. 34.
    W. Chan, M.C. Gao, Ö. N. Dogan, and P. King: J. Phase Equil. Diff., 2010, vol. 31, pp. 414-20.CrossRefGoogle Scholar
  35. 35.
    P. Jehanno, M. Heilmaier, and H. Kestler: Intermetallics, 2004, vol. 12, pp. 1005-09.CrossRefGoogle Scholar
  36. 36.
    S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, and I. G. Sharma: Acta Mater., 2009, vol. 57, pp. 4158-68.CrossRefGoogle Scholar
  37. 37.
    P. Jehanno, M. Heilmaier, H. Saage, H. Heyse, M. Böning, H. Kestler, and J. H. Schneibel: Scripta Mater., 2006, vol. 55, pp. 525-28.CrossRefGoogle Scholar
  38. 38.
    P. D. Sarkisov, L. A. Orlova, N. V. Popovich, and Yu. E. Ananeva: Glass Ceram., 2007, vol. 64, pp. 1-6.Google Scholar
  39. 39.
    D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, pp. 639-45.Google Scholar
  40. 40.
    G. R. Smolik, D. A. Petti, and S. T. Schuetz: J. Nucl. Mater., 2000, vol. 283-287, pp. 1458-62.CrossRefGoogle Scholar
  41. 41.
    C. Wagner: Z. Elekrochem., 1959, vol. 63, pp. 772-80.Google Scholar
  42. 42.
    D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow: Phil. Mag. A, 1982, vol. 46, pp. 931-49.CrossRefGoogle Scholar
  43. 43.
    G. Böhm, and M. Kahlweit: Acta Metall., 1964, vol. 12, pp. 641-48.CrossRefGoogle Scholar
  44. 44.
    E. L.Williams: J. Am. Ceram. Soc., 1965, vol. 48, pp. 190-94.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • S. Majumdar
    • 1
    • 2
    Email author
  • D. Schliephake
    • 3
  • B. Gorr
    • 2
  • H.-J. Christ
    • 2
  • M. Heilmaier
    • 3
  1. 1.Materials Processing Division, Bhabha Atomic Research CentreMumbaiIndia
  2. 2.Institut für Werkstofftechnik, Universität SiegenSiegenGermany
  3. 3.Institut für Angewandte Materialien-Werkstoffkunde (IAM-WK), Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations