Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 5, pp 2358–2368 | Cite as

The Fracture Characteristics of a Near Eutectic Al-Si Based Alloy Under Compression

  • Sudha Joseph
  • Asim TewariEmail author
  • S. Kumar
Article

Abstract

The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 × 10−4/s to 102/s and three temperatures RT, 373 K, and 473 K (100 °C and 200 °C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 μm.

Keywords

Flow Stress MoS2 Particle Fracture Damage Evolution Particle Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank General Motors for providing materials, and the facilities in the India Science Lab, and the financial support for the current study. In particular, we would like to acknowledge the support from the lab's Group Manager Dr. Arun Kumar, and technical discussions with Dr. Sushil Mishra from the General Motors' Global R&D Center at Bangalore.

References

  1. 1.
    A. Jambor and M. Beyer: Mater. Design, 1997, vol. 18, pp. 203-209.CrossRefGoogle Scholar
  2. 2.
    D.D. Goehler: Proc. of Innovations and Advancements in Aluminium Casting Technology—AFS Special Conf., City of Industry, CA, AFS, Des Plaines, IL, 1998, pp. 103–06.Google Scholar
  3. 3.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler and A. Vieregge: Mater. Sci. Engg. A, 2000, vol. 280, pp. 37-49.CrossRefGoogle Scholar
  4. 4.
    J.C. Jaquet: 2nd Int. Conf. on Molten Aluminium Proc., Orlando, FL, 1989, AFS, Des Plaines, IL, 1989, paper 2-1.Google Scholar
  5. 5.
    C.W. Meyers, A.Saigal and J.T. Berry: AFS Trans., 1983, vol. 91, pp. 281-88.Google Scholar
  6. 6.
    M.F. Hafiz and T. Kobayashi: Scripta Metall., 1994, vol.30, pp. 475-480.CrossRefGoogle Scholar
  7. 7.
    G. Guiglionda and W.J. Poole: Mater.Sci & Engg. A, 2002, vol. 336, pp. 159-169.CrossRefGoogle Scholar
  8. 8.
    A.M. Samuel and F.H. Samuel: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2359-72.CrossRefGoogle Scholar
  9. 9.
    J-.W. Yeh and W-.P. Liu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3558-3568.CrossRefGoogle Scholar
  10. 10.
    M.D. Dighe and A.M. Gokhale: Scripta Mater., 1997, vol. 37(9), pp. 1435–1440.CrossRefGoogle Scholar
  11. 11.
    L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1185-99.,CrossRefGoogle Scholar
  12. 12.
    L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1201-33.CrossRefGoogle Scholar
  13. 13.
    C.H. Caceres, J.R. Griffiths and P. Reiner: Acta. Mater., 1996, vol. 44(1), pp. 15-23.CrossRefGoogle Scholar
  14. 14.
    C.H. Caceres and J.R. Griffiths: Acta. Mater., 1996, vol. 44(1), pp. 25-33.CrossRefGoogle Scholar
  15. 15.
    K. Wallin, T.Saario and K.Torronen: Int. J. Fract. 1987, vol.32, pp. 201-209.CrossRefGoogle Scholar
  16. 16.
    M.F. Horstemeyer and A.M. Gokhale: Int. J. of solids and Struct., 1999, vol.36, pp. 5029-5055.CrossRefGoogle Scholar
  17. 17.
    G.Huber, Y.Brechet and T.Pardoen: Acta Mater., 2005, vol.53, pp. 2739-2749.CrossRefGoogle Scholar
  18. 18.
    M.F. Horstemeyer, J. Lathrop, A.M. Gokhale and M. Dighe: Theor. Appl. Fract. Mech., 2000, vol.33, pp. 31-47.CrossRefGoogle Scholar
  19. 19.
    W.J. Poole and N.Charras: Mater. Sci. & Engg. A, 2005, vol. 406, pp. 300-308.CrossRefGoogle Scholar
  20. 20.
    M.D. Dighe, A.M. Gokhale, M.F. Horstemeyer and D.A. Mosher: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1725-1731.CrossRefGoogle Scholar
  21. 21.
    L.L. Mishnaevsky Jr., N. Lippmann, S.Schmauder and P. Gumbsch: Engg. Frac. Mech., 1999, vol.63, pp. 395-411.CrossRefGoogle Scholar
  22. 22.
    Q.G. Wang, C.H. Caceres and J.R. Griffiths: Metall. Mater. Trans., 2003, vol. 34A, pp. 2901-2912.CrossRefGoogle Scholar
  23. 23.
    Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887-2899.CrossRefGoogle Scholar
  24. 24.
    C.H. Caceres, C.J. Davidson and J.R. Griffiths: Mater. Sci. Engg. A, 1995, vol. 197, pp. 171-79.CrossRefGoogle Scholar
  25. 25.
    D.L. McLellan: AFS Trans., 1982, vol.90, pp. 173-191.Google Scholar
  26. 26.
    C.W. Meyers: AFS Trans., 1986, vol.94, pp. 511-518.Google Scholar
  27. 27.
    Q.G. Wang and C.H. Caceres: Mater. Sci. Engg. A, 1997, vol. 234-236, pp. 106-109.Google Scholar
  28. 28.
    A.M. Gokhale, M.D. Dighe, M. Horstemeyer: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 905–907.CrossRefGoogle Scholar
  29. 29.
    E. Rincon, H.F. Lopez, M.M. Cisneros and H. Mancha: Mater. Sci. Engg. A, 2009, vol. 519(1-2), pp. 128-140.Google Scholar
  30. 30.
    W.J. Poole and E.J. Dowdle: Scripta Mater., 1998, vol. 39(9), pp.1281-1287.CrossRefGoogle Scholar
  31. 31.
    A. Tewari and A.M. Gokhale: Mater. Charac., 2001, vol. 46(4), pp. 329-335.CrossRefGoogle Scholar
  32. 32.
    A. Kelly and W.B. Tyson: J. Mech. Phys. Solids, 1965, vol. 13, pp. 329-350.CrossRefGoogle Scholar
  33. 33.
    A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825-37.Google Scholar
  34. 34.
    M.D. Dighe, A.M. Gokhale and M.F. Horstemeyer: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 555-565.CrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi and L. Kalwani: Mat. Sci. Engg. A, 1999, vol. 268, pp. 116-26.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mechanical EngineeringIIT BombayMumbaiIndia

Personalised recommendations