Metallurgical and Materials Transactions A

, Volume 44, Issue 8, pp 3472–3483 | Cite as

Quantifying the Solute Drag Effect on Ferrite Growth in Fe-C-X Alloys Using Controlled Decarburization Experiments

  • C. Qiu
  • H. S. Zurob
  • D. Panahi
  • Brechet Y. J. M. 
  • G. R. Purdy
  • C. R. HutchinsonEmail author
Symposium: Atomistic Effects in Migrating Interphase Interfaces: Recent Progress and Future Study


The kinetics of ferrite growth in the Fe-C-Co and Fe-C-Si systems has been quantified using controlled decarburization experiments. The Fe-C-Co system is a particularly interesting system since a large range of Co contents can be considered providing a suitable data set for examination of the composition dependence of the solute drag effect. Six Fe-C-Co alloys containing Co from 0.5 to 20 pct have been considered. Three Fe-C-Si alloys have also been considered and each has been transformed at three temperatures proving a suitable data set for examining the temperature dependence of the solute drag effect. This data set, along with ferrite growth data from decarburization experiments on an Fe-C-2Cr alloy has been used to test the ferrite growth model proposed in the companion article by Zurob et al. It is shown that this model for ferrite growth, that includes diffusional dissipation due to interaction between the solute and the migrating boundary, quantitatively captures both the temperature and composition dependence of the deviation of experimental ferrite growth kinetics from the PE and/or LENP models.


Ferrite Austenite Decarburization Boundary Velocity Chemical Potential Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CQ acknowledges the award of a Monash Graduate Scholarship (MGS) and an International Postgraduate Research Scholarship (IPRS). HSZ, DP and GP gratefully acknowledge the financial support of the Natural Science and Engineering Research Council of Canada. CRH gratefully acknowledges the award of a Future Fellowship from the Australian Research Council. The authors also wish to acknowledge many stimulating discussions with the ALEMI community.


  1. 1.
    K. Lucke and K. Detert: Acta Metall., 1957, vol. 5, p. 628.CrossRefGoogle Scholar
  2. 2.
    J.W. Cahn: Acta Metall., 1962, vol. 10, p. 789.CrossRefGoogle Scholar
  3. 3.
    K. Lucke and H.P. Stuwe: Recovery and Recrystallization of Metals, Himmel, ed., Wiley, New York, 1963, pp. 171–210.Google Scholar
  4. 4.
    K. Lucke and H.P. Stuwe: Acta Metall., 1971, vol. 19, p. 1087.CrossRefGoogle Scholar
  5. 5.
    C.W. Sinclair, C.R. Hutchinson, and Y. Brechet: Metall. Mater. Trans. A, 2007, vol. 38A, p. 821.CrossRefGoogle Scholar
  6. 6.
    M. Hillert: The Role of Interfaces in Phase Transformations. Mechanism of Phase Transformations in Solids, vol. 33, The Institute of Metals, 1968, p. 231.Google Scholar
  7. 7.
    M. Hillert and B. Sundman: Acta Metall., 1977, vol. 25, p. 11.CrossRefGoogle Scholar
  8. 8.
    M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, p. 731.CrossRefGoogle Scholar
  9. 9.
    G.R. Purdy, Y.J.M. Brechet: Acta Metall Mater., 1995, vol. 43, p. 3763.CrossRefGoogle Scholar
  10. 10.
    M. Enomoto: Acta Mater., 1999, vol. 47, p. 3533.CrossRefGoogle Scholar
  11. 11.
    M. Hillert: Acta Mater., 2004, vol. 52, p. 5289.CrossRefGoogle Scholar
  12. 12.
    J.R. Bradley and H.I. Aaronson: Metall. Trans A., 1981, vol. 12, p. 1729.CrossRefGoogle Scholar
  13. 13.
    K.M. Wu, M. Kagayama, and M. Enomoto: Mater. Sci Eng A., 2003, vol. 343, p. 143.CrossRefGoogle Scholar
  14. 14.
    J. Svoboda, F.D. Fisher, and E. Gamsjager: Acta Mater., 2002, vol. 50, p. 967.CrossRefGoogle Scholar
  15. 15.
    J. Svoboda, E. Gamsjager, F.D. Fisher, Y. Liu, and E. Kozeschnik: Acta Mater., 2011, vol. 59, p. 4775.CrossRefGoogle Scholar
  16. 16.
    J. Svoboda and E. Gamsjager: Int. J. Mater. Res., 2011, vo. 102, p. 666.CrossRefGoogle Scholar
  17. 17.
    J. Odqvist, M. Hillert, and J. Agren: Acta Mater, 2002, vol. 50, p. 3211.CrossRefGoogle Scholar
  18. 18.
    H.S. Zurob, D. Panahi, C.R. Hutchinson, Y. Brechet, G.R. Purdy: Metall. Mater. Trans. A, 2012. Doi:  10.1007/s11661-012-1479-8.Google Scholar
  19. 19.
    A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G.R. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, p. 1237.CrossRefGoogle Scholar
  20. 20.
    C.R. Hutchinson, H.S. Zurob, and Y. Brechet: Metall. Mater. Trans. A, 2006, vol. 37A, p. 1711.CrossRefGoogle Scholar
  21. 21.
    A. Beche, H.S. Zurob, and C.R. Hutchinson: Metall. Mater. Trans. A, 2007, vol. 38A, p. 2950.CrossRefGoogle Scholar
  22. 22.
    H.S. Zurob, C.R. Hutchinson, A. Beche, G.R. Purdy, and Y.J.M. Brechet: Acta Mater., 2008, vol. 56, p. 2203.CrossRefGoogle Scholar
  23. 23.
    H.S. Zurob, C.R. Hutchinson, Y. Brechet, H. Seyedrezai, and G.R. Purdy: Acta Mater., 2009, vol. 57, p. 2781.CrossRefGoogle Scholar
  24. 24.
    C.R. Hutchinson, A. Fuchsmann, and Y. Brechet: Metall. Mater. Trans. A, 2004, vol. 35A, p. 1211.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • C. Qiu
    • 1
  • H. S. Zurob
    • 2
  • D. Panahi
    • 2
  • Brechet Y. J. M. 
    • 3
  • G. R. Purdy
    • 2
  • C. R. Hutchinson
    • 1
    Email author
  1. 1.Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  3. 3.SIMAP, Institut National Polytechnique de GrenobleSt Martin D’HèresFrance

Personalised recommendations