Metallurgical and Materials Transactions A

, Volume 44, Issue 4, pp 1852–1861 | Cite as

Enhanced Mechanical Properties of a Hot-Stamped Advanced High-Strength Steel via Tempering Treatment

  • M. Naderi
  • M. Abbasi
  • A. Saeed-Akbari


The hot stamping process has an extensive range of applications due to its advantages over the traditionally used stamping techniques developed in the past. To enhance the mechanical properties of the indirectly hot-stamped parts, the quenching and partitioning (Q&P) process has been recently applied on boron-alloyed steel. In the current research, it was observed that the tempering treatment on the directly hot-stamped boron steel resulted in better mechanical properties and higher formability index compared with the reported results using the Q&P process. The nano-carbide formation and the dislocation annihilation during the tempering treatment were suggested as the evident reasons for the occurrence of the mentioned robust properties. The ease of the practical implementation of the tempering route together with the markedly enhanced mechanical properties of the tempered parts make the suggested method privileged. Additionally, the variations in the yield strength before and after tempering were quantitatively evaluated.


Ultimate Tensile Strength Scanning Transmission Electron Microscopy Light Optical Microscopy Boron Steel Yield Strength Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Naderi, A. Saeed-Akbari, and W. Bleck: J. Mater. Sci. Eng. A, 2008, vol. 487, pp. 445–55.CrossRefGoogle Scholar
  2. 2.
    H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.CrossRefGoogle Scholar
  3. 3.
    G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988.Google Scholar
  4. 4.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: J. Mater. Process. Technol., 2011, vol. 211, pp. 1117–25.CrossRefGoogle Scholar
  5. 5.
    M. Abbasi, M. Naderi, and A. Saeed-Akbari: Mater. Des., 2013, vol. 45, pp. 1–5.CrossRefGoogle Scholar
  6. 6.
    H. Liu, X. Jin, H. Dong, and J. Shi: Mater. Charact., 2011, vol. 49, pp. 223–27.CrossRefGoogle Scholar
  7. 7.
    J. Min, J. Lin, J. Li, and W. Bao: Comput. Mater. Sci., 2010, vol. 49, pp. 326–32.CrossRefGoogle Scholar
  8. 8. Boron in steel.
  9. 9.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: Steel Res. Int., 2010, vol. 81, pp. 216–23.CrossRefGoogle Scholar
  10. 10.
    K. Mori and D. Ito: CIRP Ann., 2009, vol. 58, pp. 267–70.CrossRefGoogle Scholar
  11. 11.
    G. Schießl, T. Possehn, T. Heller, and S. Sikora: IDDRG International Deep Drawing Group 2004 Conference Sindelfingen, Germany, 2004, pp. 158–66.Google Scholar
  12. 12.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: J. Mater. Sci. Technol., 2011, vol. 27, pp. 369–76.CrossRefGoogle Scholar
  13. 13.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: Procedia Eng., 2011, vol. 10, pp. 460–65.CrossRefGoogle Scholar
  14. 14.
    H.L. Yi, S. Ghosh, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4870–74.CrossRefGoogle Scholar
  15. 15.
    H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749–52.CrossRefGoogle Scholar
  16. 16.
    M. Naderi: Doctoral Thesis, RWTH Aachen University, Germany, 2007.Google Scholar
  17. 17.
    B. Schulz: Aust. Manuf. Technol., 2007, pp. 42–47.Google Scholar
  18. 18.
    DIN 50114, Zugversuch an dünnen Blechen.Google Scholar
  19. 19.
    DIN ISO 2768 Allgemeintoleranzen.Google Scholar
  20. 20.
    W. Bleck: Materials Science of Steel, Textbook for RWTH students, Verlag Mainz, Aachen, 2007.Google Scholar
  21. 21.
    A.C. Bannister and S.J. Trail: Structural Integrity Assessment Procedures for European Industry. British steel plc., 1996.Google Scholar
  22. 22.
    R.L. Brockenbrough & Associates, Inc, Effect of Yield-Tensile Ratio on Structural Behaviour-High Performance Steels for Bridge Construction, ONR-AISI Agreement No. N00014-94-2-0002, 1995.Google Scholar
  23. 23.
    I.V. Gorynin, V.V. Rybin, V.A. Malyshevskii, T.G. Semicheva, and L.G. Sherokhina: Met. Sci. Heat Treat., 1999, vol. 41, pp. 377–83.CrossRefGoogle Scholar
  24. 24.
    B. Hoffmann, O. Vöhringer, and E. Macherauch: J. Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 707–10.CrossRefGoogle Scholar
  25. 25.
    L. Balogh, R.B. Figueiredo, T. Ungár, and T.G. Langdon: J. Mater. Sci. Eng. A, 2010, vol. 528, pp. 533–38.CrossRefGoogle Scholar
  26. 26.
    G. Krauss: Heat Treatment and Processing Principles, American Society for Metals, 1990.Google Scholar
  27. 27.
    D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, 2nd Ed., Nelson Thornes Ltd., Cheltenham, 1992.Google Scholar
  28. 28.
    D. Holec and A. Dlouhy: Mater. Sci. Forum, 2005, vol.482, pp. 159–62.CrossRefGoogle Scholar
  29. 29.
    J. Pešička, R. Kužel, A. Dronhofer, and G. Eggerler: Acta Mater., 2003, vol. 51, pp. 4847–62.CrossRefGoogle Scholar
  30. 30.
    Y. Weng, H. Dong, and Y. Gan: Advanced Steels, Springer, 2011.Google Scholar
  31. 31.
    A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill, New York, 2003.Google Scholar
  32. 32.
    ImageJ 1.42q Software, National Institutes of Health, USA.Google Scholar
  33. 33.
    R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, 1991.Google Scholar
  34. 34.
    Heat Treater’s Guide: Practice and Procedures for Irons and Steels, ASM international, 1995.Google Scholar
  35. 35.
    E.V. Kozlov, N.A. Popova, S.I. Klimashin, V.E. Gromov, and N.A. Koneva: Russ. Phys. J., 2006, vol. 49, pp. 47–54.CrossRefGoogle Scholar
  36. 36.
    J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scripta Mater., 2010, vol. 63, pp. 815–18.CrossRefGoogle Scholar
  37. 37.
    G. Gottstein: Physical Foundations of Materials Science, Springer, Germany, 2004.CrossRefGoogle Scholar
  38. 38.
    M. Säglitz, D.K. Matlock, and G. Krauss: International Conference on New Development in Advanced High-Strength Sheet Steels, Orlando, June 15–18, 2008, pp. 147–54.Google Scholar
  39. 39.
    S. Vandeputte, D. Vanderschhuern, S. Claessens, and L.T. Martinez: 9th International Conference on Steel Sheet Metal, Leuven, Belgium, 2001, pp. 405–14.Google Scholar
  40. 40.
    M. Abbasi, A. Saeed Akbari, and M. Naderi: Mater. Sci. Eng. A, 2012, vol. 538, pp. 356–63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Mining and MetallurgyAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of EngineeringUniversity of KashanKashanIran
  3. 3.Department of Ferrous MetallurgyRWTH Aachen UniversityAachenGermany

Personalised recommendations