Metallurgical and Materials Transactions A

, Volume 44, Issue 4, pp 1897–1907 | Cite as

Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy

  • Hongseok Choi
  • Woo-hyun Cho
  • Hiromi Konishi
  • Sindo Kou
  • Xiaochun Li


Al-Cu alloys (such as A206) offer high strength and high fracture toughness at both room and elevated temperatures. However, their widespread applications are limited because of their high susceptibility to hot tearing. This article presents a nanotechnology approach to enhance hot-tearing resistance for A206. Specifically, γ-Al2Onanoparticles were used, and their effects on the hot-tearing resistance of the as-cast Al-4.5Cu alloy (A206) were investigated. While it is well known that grain refinement can improve the hot-tearing resistance of cast Al alloys, the current study demonstrated that nanoparticles can be much more effective in the case of A206. The hot-tearing susceptibilities (HTSs) of A206 alloy and its Al2Onanocomposite were evaluated by constrained rod casting (CRC) with a steel mold. Monolithic A206 and M206 (the Ti-free version of A206) alloys with the B contents of 20, 40, and 300 ppm from an Al-5Ti-1B master alloy addition were also cast under the same conditions for comparison. The results showed that with an addition of 1 wt pct γ-Al2Onanoparticles, the extent of hot tearing in A206 alloys was markedly reduced to nearly that of A356, an Al-Si alloy highly resistant to hot tearing. As compared with grain-refined A206 or M206, the hot-tearing resistance of the nanocomposites was significantly better, even though the grain size was not reduced as much. Microstructural analysis suggested that γ-Al2Onanoparticles modified the solidification microstructure of the eutectic of θ-Al2Cu and α-Al, as well as refined primary grains, resulting in the enhancement of the hot-tearing resistance of A206 to a level similar to that of A356 alloy.


  1. 1.
    A. Kearney and E.L. Rooy (1990) Asmhandbook, vol 2. ASM, Plaines, pp 123–151.Google Scholar
  2. 2.
    G.K. Sigworth and F. DeHart: AFS Trans., 2003, vol. 111, pp. 341-354.Google Scholar
  3. 3.
    S. Lin, C. Aliravci, and N.I.O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1056-1068.CrossRefGoogle Scholar
  4. 4.
    G.K. Sigworth: AFS Trans., 1996, vol. 104, pp. 1053-1062.Google Scholar
  5. 5.
    D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1511-1519.CrossRefGoogle Scholar
  6. 6.
    S. Li, K. Sadayappan, and D. Apelian: Int. J. Cast Metal. Res., 2011, vol. 24, pp. 88-95.CrossRefGoogle Scholar
  7. 7.
    D.G. Eskin, Suyitno, L. Katgerman (2004) Prog. Mater. Sci. 49:629-711.CrossRefGoogle Scholar
  8. 8.
    J. Campbell (2003) Castings, 2nd edn. Butterworth Heinemann, Oxford, p. 242.Google Scholar
  9. 9.
    M.A. Easton, H. Wang, J.F. Grandfield, D.H. StJohn, and E. Sweet: Mater. Forum, 2004, vol. 28, pp. 224-229.Google Scholar
  10. 10.
    F. Fasoyinu, J. Thomson, M. Sahoo, P. Burke, and D. Weiss: Modern Casting, 2008, vol. 98, pp. 43-46.Google Scholar
  11. 11.
    H. Nagaumi, S. Suzuki, T. Okane and T. Umeda: Mater. Trans., 2006, vol. 47, pp. 2821-2827.CrossRefGoogle Scholar
  12. 12.
    A. Mazahery, H. Abdizadeh, and H.R. Baharvandi: Mater. Sci. Eng. A, 2009, vol. 518, pp. 61-64.CrossRefGoogle Scholar
  13. 13.
    H. Choi, Y. Sun, B. Slater, H. Konishi, and X. L: Adv. Eng. Mater., 2012, vol. 14, pp. 291-295.CrossRefGoogle Scholar
  14. 14.
    H. Choi, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2012, vol. 541, pp. 159-165.CrossRefGoogle Scholar
  15. 15.
    J. Lan, Y. Yang, and X.C. Li: Mater. Sci. Eng. A, 2004, vol. 386, pp. 284-290.Google Scholar
  16. 16.
    G. Cao, H. Choi, J. Oportus, H. Konishi, and X.C. Li: Mater. Sci. Eng. A, 2008, vol. 494, pp. 127-131.CrossRefGoogle Scholar
  17. 17.
    H. Choi, M. Jones, H. Konishi, and X.C. Li: Metall. Mater. Trans. A, 2012, vol. 43, pp. 738-746.CrossRefGoogle Scholar
  18. 18.
    D.Y. Ying and D.L. Zhang: Mater. Sic. Eng. A, 2000, vol. 286, pp. 152-156.CrossRefGoogle Scholar
  19. 19.
    M. Kok: J. Mater. Process. Technol., 2005, vol. 161, pp. 381-387.CrossRefGoogle Scholar
  20. 20.
    M. De Cicco, L. Turng, X.C. Li, J. Perepezko (2011) Metall. Mater. Trans. A 42:2323-2330.CrossRefGoogle Scholar
  21. 21.
    S. Li and D. Apelian: Int. J. Metalcasting, 2011, vol. 5, pp. 23-40.Google Scholar
  22. 22.
    R.A. Rosenberg, M.C. Flemings, and H.F. Taylor: Trans. AFS, 1960, vol. 68, pp. 518-528.Google Scholar
  23. 23.
    G. Cao, C. Zhang, H. Cao, Y.A. Chang, and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 706-716.CrossRefGoogle Scholar
  24. 24.
    A.L. Kearney, E.L. Rooy (1990) ASM Handbook, ASM, Des Plaines, pp. 152-177.Google Scholar
  25. 25.
    M.C. Flemings: Solidification Processing, p. 252-256, McGraw-Hill, New York, 1974.Google Scholar
  26. 26.
    H. Kamguo Kamga, D. Larouche, M. Bournane, A. Rahem (2010) Mater. Sci. Eng. A 527:. 7413-7423.CrossRefGoogle Scholar
  27. 27.
    W.F. Li, X.L. Ma, W.S. Zhang, W. Zhang, Y. Li, and Z.D. Zhang: Phys. Stat. Sol. A, 2006, vol. 203, pp. 294-299.CrossRefGoogle Scholar
  28. 28.
    H. Kaftelen, N. Unlu, G. Goller, M.L. Ovecoglu, and H. Henein: Composites: Part A, 2011, vol. 42, pp. 812-82.CrossRefGoogle Scholar
  29. 29.
    B.L. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-1995.Google Scholar
  30. 30.
    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1409-1420.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Hongseok Choi
    • 1
  • Woo-hyun Cho
    • 1
  • Hiromi Konishi
    • 2
  • Sindo Kou
    • 3
  • Xiaochun Li
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Departments of Geoscience and Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations