Metallurgical and Materials Transactions A

, Volume 44, Issue 4, pp 1842–1851 | Cite as

Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys

  • S. D. Luo
  • C. L. Guan
  • Y. F. Yang
  • G. B. Schaffer
  • M. Qian


This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from −100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation–susceptor package, despite the high vacuum used (≤4.0 × 10−3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.



This study was supported by the Australian Research Council (ARC) through the Centre of Excellence for Design in Light Metals.


  1. 1.
    E. Siores, and D. Do Rego: J. Mater. Proc. Technol., 1995, vol. 48, pp. 619-25.CrossRefGoogle Scholar
  2. 2.
    D.E. Clark, and W.H. Sutton: Annu. Rev. Mater. Sci., 1996, vol. 26, pp. 299-331.CrossRefGoogle Scholar
  3. 3.
    Yu.V. Bykov, K.I. Rybakov, and V.E. Semenov: J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 55-75.CrossRefGoogle Scholar
  4. 4.
    D. Agrawal: Trans. Indian Ceram. Soc., 2006, vol. 65, pp. 129-44.Google Scholar
  5. 5.
    R. Roy, D. Agrawal, J.P. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, pp. 668-70.CrossRefGoogle Scholar
  6. 6.
    M. Gupta, and W.W. Leong: Microwaves and Metals, Wiley (Asia), Singapore, 2007.CrossRefGoogle Scholar
  7. 7.
    N. Yoshikawa: J. Micorwave Power EE, 2010, vol. 44, pp. 4-13.Google Scholar
  8. 8.
    A. Mondal: Microwave Sintering of Metals, LAP Lambert Academic Publishing, Saarbrücken, 2011.Google Scholar
  9. 9.
    G. Sethi, A. Upadhaya, and D. Agrawal: Sci. Sinter., 2003, vol. 35, pp. 49-65.CrossRefGoogle Scholar
  10. 10.
    P. Mishra, G. Sethi, and A. Upadhyaya: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 839-45.CrossRefGoogle Scholar
  11. 11.
    M. Jain, G. Skandan, K. Martin, K. Cho, B. Klotz, R. Dowding, D. Kapoor, D. Agrawal, and J. Cheng: Int. J. Powder Metall., 2006, vol. 42, pp. 45-50.Google Scholar
  12. 12.
    V.D. Buchelnikov, D.V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A.P. Anzulevich, I.V. Bychkov, and A. Inoue: J. Appl. Phys., 2008, vol. 104, p. 113505.CrossRefGoogle Scholar
  13. 13.
    A. Mondal, D. Agrawal, and A. Upadhyaya: J. Microwave Power EE, 2010, vol. 44, pp. 28-44.Google Scholar
  14. 14.
    M. Tanaka, H. Kona, and K. Maruyama: Phys. Rev. B, 2009, vol. 79, pp. 104420.CrossRefGoogle Scholar
  15. 15.
    M.F. Ashby, and D.R.H. Jones: Engineering Materials 1: An Introduction to their Properties, Applications and Design, 4th ed., Butterworth-Heinemann, Oxford, 2011, pp. 58.Google Scholar
  16. 16.
    M.A. Imam, F.H. Froes, and K.L. Housley: in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, 2010, pp. 1-41.Google Scholar
  17. 17.
    F.H. Froes, and D. Eylon: Int. Mater. Rev., 1990, vol. 35, pp. 162-68.CrossRefGoogle Scholar
  18. 18.
    M. Qian: Int. J. Powder Metall., 2010, vol. 46, pp. 29-44.Google Scholar
  19. 19.
    M. Sato, H. Fukusima, F. Ozeki, T. Hayasi, Y. Satito, and S. Takayama: 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, Karlsruhe, 2004, pp. 831–32.Google Scholar
  20. 20.
    A. Cottrell: An Introduction to Metallurgy, 2nd ed., IOM, London, 1975, p. 495.Google Scholar
  21. 21.
    M.G. Kutty, S. Bhaduri, and S.B. Bhaduri, 2004. J. Mater. Sci., vol. 15, pp. 145-50.CrossRefGoogle Scholar
  22. 22.
    T. Hayashi: Reports of Research Institute of Industrial Products Technology, Research Institute Industrial Products Technology, Gifu, 2005.Google Scholar
  23. 23.
    T. Marcelo, J. Mascarenhas, and F.A.C. Oliveira: Mater. Sci. Forum, 2010, vol. 636-637, pp. 946-51.CrossRefGoogle Scholar
  24. 24.
    R.W. Bruce, A.W. Fliflet, H.E. Huey, C. Stephenson, and M.A. Imam: Key Eng. Mater., 2010, vol. 436, pp. 131-40.CrossRefGoogle Scholar
  25. 25.
    S.D. Luo, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2466-74.CrossRefGoogle Scholar
  26. 26.
    I.M. Robertson, and G.B. Schaffer: Powder Metall., 2009, vol. 52, pp. 225-32.CrossRefGoogle Scholar
  27. 27.
    S.D. Hill, and R.V. Mrazek: Metall. Trans., 1974, vol. 5A, pp. 53-58.Google Scholar
  28. 28.
    D.F. Heaney and R.M. German: in Proceedings of the PM 2004 Powder Metallurgy World Congress, H. Danninger and R. Ratzi, eds., European Powder Metallurgy Association, Shrewsbury, 2004, pp. 222–27.Google Scholar
  29. 29.
    Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6719-26.CrossRefGoogle Scholar
  30. 30.
    T. Saito: Adv. Perform. Mater., 1995, vol. 2, pp. 121-44.CrossRefGoogle Scholar
  31. 31.
    Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau, and W.H. Peter: Key Eng. Mater., 2010, vol. 436, pp. 103-11.CrossRefGoogle Scholar
  32. 32.
    S. Abkowitz, J.M. Siergiej, and R.D. Regan: in Modern Developments in Powder Metallurgy, H.H. Hausner, ed., Metal Powder Industries Federation, Princeton, 1971, pp. 501–11.Google Scholar
  33. 33.
    A.D. Hanson, J.C. Runkle, R. Widmer, and J.C. Hebeisen: Int. J. Powder Metall., 1990, vol. 26, pp. 157-64.Google Scholar
  34. 34.
    F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, and V.A. Duz: JOM, 2004, vol. 56, pp. 46-48.CrossRefGoogle Scholar
  35. 35.
    O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, and C. Lavender: in Proceedings of Conference on Science and Technology of Powder Materials: Synthesis, Consolidation and Properties, Pittsburg, MS&T 2005, pp. 151–58.Google Scholar
  36. 36.
    N.R. Moody, W.M. Garrison, Jr., J.E. Smugeresky, and J.E. Costa: Metall. Trans. A, 1993, vol. 24A, pp. 161-74.Google Scholar
  37. 37.
    H. Guo, Z. Zhao, C. Duan, and Z. Yao: JOM, 2008, vol. 60, pp. 47-49.CrossRefGoogle Scholar
  38. 38.
    G. Leitner, and K. Jaenicke-Rssler: J. Phys. IV, 1993, vol. 3, p. 403.Google Scholar
  39. 39.
    J. Ma, J.F. Diehl, E.J. Johnson, K.R. Martin, N.M. Miskovsky, C.T. Smith, G.J. Weisel, B.L. Weiss, and D.T. Zimmerman: J. Appl. Phys., 2007, vol. 101, pp. 074906.CrossRefGoogle Scholar
  40. 40.
    Y.N. Podrezov, V.A. Nazarenko, A.V. Vdovichenko, V.I. Danilenko, O.S. Koryak, and Y.I. Evich: Powder Metall. Metal Ceram., 2009, vol. 48, pp. 201-10.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • S. D. Luo
    • 1
  • C. L. Guan
    • 1
  • Y. F. Yang
    • 1
  • G. B. Schaffer
    • 1
  • M. Qian
    • 1
  1. 1.The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light MetalsBrisbaneAustralia

Personalised recommendations