Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 4, pp 1917–1924 | Cite as

Preparation of Freestanding Zn Nanocrystallites by Combined Milling at Cryogenic and Room Temperatures

  • Chandra Sekhar Tiwary
  • Akash Verma
  • Sanjay Kashyp
  • Krishanu Biswas
  • Kamanio Chattopadhyay
Article

Abstract

The present investigation reports the preparation of freestanding nanocrystalline Zn by combined mechanical milling at cryogenic and room temperatures. The cryomilling is used as an effective means of rapid fracturing. The detailed scanning electron microscopy and transmission electron microscopy observations indicate that the minimum crystallite size is 6 ± 2 nm after 3 hours of cryomilling. The crystallite size increases to 30 ± 2 nm after 3 hours of room temperature milling of the cryomilled powder due to deformation-induced sintering. Detailed theoretical analysis allows us to obtain a diagram of size of the nanoparticles formed vs temperature to explain the experimental findings.

Keywords

Milling Crystallite Size Shear Band Mechanical Milling High Magnification Micrograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Convener of Institute Nanoscience Initiative, Indian Institute of Science, Bangalore, for allowing use of the microscopy facility for characterization for this article’s work. The authors also thank the Nanoscience and Technology Initiatives (NSTI), Department of Science and Technology, Government of India, for financial support.

References

  1. 1.
    B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–41.CrossRefGoogle Scholar
  2. 2.
    C.C. Koch: Mater. Sci. Eng. A, 1998, vol. 244, pp. 39–48.CrossRefGoogle Scholar
  3. 3.
    S.K. Pabi, D. Das, T.K. Mahapatra, and I. Manna: Acta Mater., 1998, vol. 46, pp. 3501–10.CrossRefGoogle Scholar
  4. 4.
    D. Das, P.P. Chatterjee, I. Manna, and S.K. Pabi: Scripta Mater., 1999, vol. 41, pp. 861–66.CrossRefGoogle Scholar
  5. 5.
    D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60.CrossRefGoogle Scholar
  6. 6.
    F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.CrossRefGoogle Scholar
  7. 7.
    C.C. Koch: Nanostruct. Mater., 1993, vol. 2, pp. 109–29.CrossRefGoogle Scholar
  8. 8.
    A. Verma, K. Biswas, C.S. Tiwary, A. Mondal, and K. Chattopadhyay: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1127–37.CrossRefGoogle Scholar
  9. 9.
    C.S. Tiwary, A. Verma, K. Biswas, A. Mondal, and K. Chattopadhyay: Ceram. Int., 2011, vol. 37, pp. 3677–86.CrossRefGoogle Scholar
  10. 10.
    K. Barai, C.S. Tiwary, P.P. Chattopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A, 2012, vol. 558, pp. 52–58.CrossRefGoogle Scholar
  11. 11.
    X. Zhang, H. Wang, J. Narayan, and C.C. Koch: Acta Mater., 2001, vol. 49, pp. 1319–26.CrossRefGoogle Scholar
  12. 12.
    X. Zhang, H. Wang, M. Kassem, J. Narayan, and C.C. Koch: Scripta Mater., 2002, vol. 46, pp. 661–65.CrossRefGoogle Scholar
  13. 13.
    I. Manna, P.P. Chattopadhyay, F. Banhart, and H.-J. Fecht: Appl. Phys. Lett., 2002, vol. 81, pp. 4136–38.CrossRefGoogle Scholar
  14. 14.
    I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.-J. Fecht: J. Appl. Phys., 2003, vol. 93, pp. 1520–22.CrossRefGoogle Scholar
  15. 15.
    G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  16. 16.
    M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRefGoogle Scholar
  17. 17.
    H.J. Fecht: Nanostruct. Mater., 1995, vol. 6, pp. 33–42.CrossRefGoogle Scholar
  18. 18.
    B. Han, J. Ye, F. Tang, J. Shoenung, and E.J. Lavernia: J. Mater. Sci., 2007, vol. 42, pp. 1660–72.CrossRefGoogle Scholar
  19. 19.
    F. Sun, P. Rojas, A. Zúñiga, and E.J. Lavernia: Mater. Sci. Eng. A, 2006, vol. 430, pp. 90–97.CrossRefGoogle Scholar
  20. 20.
    M.I. Alymov, E.I. Maltina, and Y.N. Stepanov: Nanostruct. Mater., 1994, vol. 4, pp. 737–42.CrossRefGoogle Scholar
  21. 21.
    G. Guisbiers and S. Pereira: Nanotechnology, 2007, vol. 18, pp. 435710-1–435710-7.CrossRefGoogle Scholar
  22. 22.
    C. Flake and C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, Materials Park, OH, 2008.Google Scholar
  23. 23.
    J.C. Billelo, D. Dew-Hughes, and A.T. Pucino: J. Appl. Phys., 1983, vol. 54, pp. 821–26.CrossRefGoogle Scholar
  24. 24.
    N. Hashimoto, H. Yoden, and S. Deki: J. Am. Ceram. Soc., 1993, vol. 76, pp. 438–42.CrossRefGoogle Scholar
  25. 25.
    R.B. Schwarz and C.C. Koch: Appl. Phys. Lett., 1986, vol. 49, pp. 146–48.CrossRefGoogle Scholar
  26. 26.
    Smithells Metal Reference Handbook, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann, Burlington, MA, 1992.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Chandra Sekhar Tiwary
    • 1
  • Akash Verma
    • 2
  • Sanjay Kashyp
    • 1
  • Krishanu Biswas
    • 2
  • Kamanio Chattopadhyay
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations