Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1419–1429 | Cite as

Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy

  • R. Krishna
  • S. V. Hainsworth
  • S. P. A. Gill
  • A. Strang
  • H. V. AtkinsonEmail author


Two creep-exposed Inconel 617 alloy samples [923 K (650 °C) for 45,000 hours and 973 K (700 °C) for 4000 hours] have been studied using analytical electron microscopy and X-ray diffraction techniques. The thermodynamically predicted equilibrium phases in Inconel 617 alloy were compared with the phases observed which are molybdenum-enriched, topologically close-packed μ-phase, along with precipitates of gamma-prime (γ′), M23C6 and Ti(C,N). The μ-phase precipitates were in the size range 60 to 500 nm (with some larger agglomerates); they were situated both within the grains, along twin and grain boundaries, and near intra- and intergranular carbides. The stacking faults in the μ-phase were observed in high magnification electron microscopy. The precipitation of the μ-phase in these samples is significant for the potential use of this alloy in future generation steam power plants as the appearance of the μ-phase is associated with an increased tendency for cracks and voids to initiate. The μ-phase has not been previously identified in the literature relating to creep or thermal exposure of Inconel 617 alloy.


Thermal Exposure Solid Solution Strengthen Creep Exposure Equilibrium Volume Fraction Thermodynamic Equilibrium Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank ALSTOM Power Ltd. for supplying creep-exposed Inconel 617 alloys and wish to thank the UK Government’s Technology Strategy Board for providing financial support to carry out this work. Mr G. Clark is thanked for help with microscopy and Mr T Forryan is thanked for preparing samples for XRD analysis.


  1. 1.
    J.C. Hosier and D.J. Tillack: Met. Eng. Q., 1972, vol. 12 (3), pp. 51–55.Google Scholar
  2. 2.
    W.L. Mankins, J.C. Hosier, and T.H. Bassford: Metall. Mater. Trans. B, 1974, vol. 5, pp. 2579–90.Google Scholar
  3. 3.
    R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp. 158–65.CrossRefGoogle Scholar
  4. 4.
    C.M.F. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–25.CrossRefGoogle Scholar
  5. 5.
    C.T. Sims: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley, New York, 1987, pp. 217–40.Google Scholar
  6. 6.
    M. Simonetti and P. Caron: Mater. Sci. Eng. A, 1998, vol. 254, pp. 1–12.CrossRefGoogle Scholar
  7. 7.
    X.Z. Qin, J.T. Guo, C. Yuan, G.X. Yang, L.Z. Zhou, and H.Q. Ye: J. Mater. Sci., 2009, vol. 44, pp. 4840–47.CrossRefGoogle Scholar
  8. 8.
    J.-C. Zhao and M.F. Henry: Adv. Eng. Mater., 2002, vol. 4 (7), pp. 501–08.CrossRefGoogle Scholar
  9. 9.
    H.M. Tawancy: J. Mater. Sci., 1996, vol. 31, pp. 3929–36.CrossRefGoogle Scholar
  10. 10.
    N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto: Mater. Sci. Eng. A, 2008, vol. 498 (1–2), pp. 412–20.Google Scholar
  11. 11.
    J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: Scripta Mater., 2006, vol. 55 (4), pp. 331–34.CrossRefGoogle Scholar
  12. 12.
    K. Zhao, L.H. Lou, Y. Wen, H. Li, and Z.Q. Hu: J. Mater. Sci., 2004, vol. 39 (1), pp. 369–71.CrossRefGoogle Scholar
  13. 13.
    M.S.A. Karunaratne, C.M.F. Rae, and R.C. Reed: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2409–21.CrossRefGoogle Scholar
  14. 14.
    R.C. Reed, M.P. Jackson, and Y.S. Na: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 521–33.CrossRefGoogle Scholar
  15. 15.
    M. Raghavan, R.R. Mueller, G.A. Vaughn, and S. Floreen: Metall. Trans. A, 1984, vol. 15A, pp. 783–92.Google Scholar
  16. 16.
    H. Kirchhöfer, F. Schubert, and H. Nickel: Nucl. Technol., 1984, vol. 66 (1), pp. 139–48.Google Scholar
  17. 17.
    Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2569–85.CrossRefGoogle Scholar
  18. 18.
    R. Krishna, S.V. Hainsworth, H.V. Atkinson, and A. Strang: Mater. Sci. Technol., 2010, vol. 26 (7), pp. 797–802.CrossRefGoogle Scholar
  19. 19.
    N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.-P. Schillé: in Superalloys 2004, K.A. Green, T.M. Pollock, and H. Harada, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 849–58.Google Scholar
  20. 20.
    Y. Hosoi and S. Abe: Metall. Trans. A, 1975, vol. 6A, pp. 1171–78.Google Scholar
  21. 21.
    O.F. Kimball, G.Y. Lai, and G.H. Reynolds: Metall. Trans. A, 1976, vol. 7A, pp. 1951–52.Google Scholar
  22. 22.
    T. Takahashi, J. Fujiwara, T. Matsushima, M. Kiyokawa, I. Morimoto, and T. Watanabe: Trans. ISIJ, 1978, vol. 18, pp. 221–24.Google Scholar
  23. 23.
    S. Kihara, J.B. Newkirk, A. Ohtomo, and Y. Saiga: Metall. Trans. A, 1980, vol. 11A, pp. 1019–31.Google Scholar
  24. 24.
    E. Gariboldi, M. Cabibbo, S. Spigarelli, and D. Ripamonti: Int. J. Press. Vessels Pip., 2008, vol. 85, pp. 63–71.CrossRefGoogle Scholar
  25. 25.
    K. Schneider, W. Hartnagel, P. Schepp, and B. Ilschner: Nucl. Technol., 1984, vol. 66 (2), pp. 289–95.Google Scholar
  26. 26.
    G.N. Maniar and A. Szirmae, eds.: Manual on Electron Metallography Techniques, ASTM Special Technical Publication 547, American Society for Testing and Materials, Philadelphia, PA, 1973, pp. 3–24.Google Scholar
  27. 27.
    K.C. Thompson-Russell and J.W. Edington: Electron Microscope Specimen Preparation Techniques in Materials Science, vol. 5, Philips Technical Library, Monographs in Practical Electron Microscopy in Materials Science, Macmillan Publishers Ltd, London, 1977.Google Scholar
  28. 28.
    K.R. Vishwakarma, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng A, 2008, vol. 480 (1–2), pp. 517–28.Google Scholar
  29. 29.
    W. Betteridge and J. Heslop, eds.: The Nimonic Alloys and Other Nickel-Base High-Temperature Alloys, Edward Arnold (Publishers) Ltd., London, 1959, pp. 71–72.Google Scholar
  30. 30.
    R. Krishna, S.V. Hainsworth, S.P.A. Gill, A. Strang, and H.V. Atkinson: Proc. 2nd Int. ECCC Conf. on ‘Creep & Fracture in High Temperature ComponentsDesign & Life Assessment’, I.A. Shibli and S.R. Holdsworth, eds., 21–23 April 2009, Zurich, pp. 764–76.Google Scholar
  31. 31.
    Thermo-Calc Software AB (Version 4),, Stockholm, Sweden, August 2006.
  32. 32.
    P.J. Ennis, K.P. Mohr, and H. Schuster: Nucl. Technol., 1984, vol. 66 (2), pp. 363–68.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • R. Krishna
    • 1
  • S. V. Hainsworth
    • 1
  • S. P. A. Gill
    • 1
  • A. Strang
    • 1
  • H. V. Atkinson
    • 1
    Email author
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterU.K.

Personalised recommendations