Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1519–1529 | Cite as

Recrystallization Phenomena During Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy

  • A. G. Rao
  • K. R. Ravi
  • B. Ramakrishnarao
  • V. P. Deshmukh
  • A. Sharma
  • N. Prabhu
  • B. P. Kashyap


Microstructural evolution and related dynamic recrystallization phenomena were investigated in overlapping multipass friction stir processing (FSP) of hypereutectic Al-30 pct Si alloy. FSP resulted in the elimination of porosities along with the refinement of primary silicon particles and alpha aluminum grains. These alpha aluminum grains predominantly exhibit high angle boundaries with various degrees of recovered substructure and dislocation densities. The substructure and grain formation during FSP take place primarily by annihilation and reorganization of dislocations in the grain interior and at low angle grain boundary. During multipass overlap FSP, small second phase particles were observed to form, which are accountable for pinning the grain boundaries and thus restricting their growth. During the multipass overlap FSP, the microstructure undergoes continuous dynamic recrystallization by formation of the subgrain boundary and subgrain growth to the grain structure comprising of mostly high angle grain boundaries.


  1. 1.
    A.J. Clegg and A.A. Das: Wear, 1977, vol. 43, pp. 367–73.CrossRefGoogle Scholar
  2. 2.
    P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J.M. Rodriguez-Ibabe: Acta Mater., 1996, vol. 44, pp. 1717–27.CrossRefGoogle Scholar
  3. 3.
    J.L. Estrada and J. Duszczyk: J. Mater. Sci., 1990, vol. 25, pp. 886–904.Google Scholar
  4. 4.
    Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887–99.CrossRefGoogle Scholar
  5. 5.
    T. Wai, F. Yan, and J. Tian: J. Alloy. Compd., 2005, vol. 389, pp. 169–76.CrossRefGoogle Scholar
  6. 6.
    A. Agrawal and T. Mchechnie: Adv. Mater. Process., 2001, vol. 159, pp. 44–50.Google Scholar
  7. 7.
    G. Rivera, C. Cmapillo, B. Castro, M. Herrera, and J. Islas: Mater. Sci. Eng. A, 2000, vol. 273, pp. 149–59.Google Scholar
  8. 8.
    C.L. Xu, H.Y. Wang, Y.F. Yang, and Q.C. Jiang: J. Alloy. Compd., 2006, vol. 421, pp. 128–36.CrossRefGoogle Scholar
  9. 9.
    A. Knuutien, K. Nogita, S.D. Mcdonald, and A.K. Dahle: J. Light Met., 2001, vol. 1, pp. 229–40.CrossRefGoogle Scholar
  10. 10.
    Y. Iwahashi, J.-T. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.CrossRefGoogle Scholar
  11. 11.
    B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, and R.Z. Valiev: Acta Mater., 2004, vol. 52, pp. 4469–78.CrossRefGoogle Scholar
  12. 12.
    C. Xu, M. Furukawa, Z. Horita, and T.G. Landon: Acta Mater., 2003, vol. 51, pp. 6139–49.CrossRefGoogle Scholar
  13. 13.
    L. Blaza, M. Sugamata, J. Kanekob, J. Sobota, G. Wloch, W. Bochniak, and A. Kula: J. Mater. Process. Technol, 2009, vol. 209, pp. 4329–36.CrossRefGoogle Scholar
  14. 14.
    C.-H. Chiang and C.Y.A. Tsao: Mater. Sci. Eng. A, 2005, vol. 396, pp. 263–70.CrossRefGoogle Scholar
  15. 15.
    M. Gupta, F.A. Mohamed, and E.J. Lavernia: Metall. Trans. A, 1992, vol. 23A, pp. 831–39.Google Scholar
  16. 16.
    C. Cui, A. Schulz, K. Schimanski, and H.W. Zoch: J. Mater. Process. Technol., 2009, vol. 209, pp. 5220–5528.CrossRefGoogle Scholar
  17. 17.
    J. Zhuo, J. Duszczyk, and B.M. Lorevaar: J. Mater. Sci., 1991, vol. 26, pp. 3041–50.CrossRefGoogle Scholar
  18. 18.
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee: Scripta Mater., 2000, vol. 42, pp. 163–68.Google Scholar
  19. 19.
    R.S. Mishra and M.W. Mahoney: Mater. Sci. Forum, 2001, vol. 357, pp. 507–10.CrossRefGoogle Scholar
  20. 20.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.J. Smith, and C.J. Dawes: G.B. Patent Application No. 9125978.8, 1991.Google Scholar
  21. 21.
    Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.CrossRefGoogle Scholar
  22. 22.
    E.A. El-Danaf, M.M. El-Rayes, and M.S. Soliman: Mater. Des., 2010, vol. 31, pp. 1231–36.CrossRefGoogle Scholar
  23. 23.
    T. Morishigie, T. Hirata, M. Tsujikawa, and K. Higashi: Mater. Lett., 2010, vol. 64, pp. 1905–08.CrossRefGoogle Scholar
  24. 24.
    A.L. Pilchak and J.C. Williams: Metall. Mater. Trans. A, 2010, vol. 41A, 22–25.CrossRefGoogle Scholar
  25. 25.
    Z.Y. Ma, B.L. Xiao, J. Yang, and A.H. Feng: Mater. Sci. Forum, 2010, vol. 638, pp. 1191–96.CrossRefGoogle Scholar
  26. 26.
    J. Gandra, R. Miranda, P. Vilaca, A. Velhinho, and J.P. Teixeira: J. Mater. Process. Technol., 2011, vol. 211, pp. 1659–68.CrossRefGoogle Scholar
  27. 27.
    M. Barmouz, P. Asadi, M.K. Beshararti-Givi, and M. Taherishangh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1740–49.CrossRefGoogle Scholar
  28. 28.
    D. Yadov and R. Bauri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1326–33.CrossRefGoogle Scholar
  29. 29.
    M. Yang, C. Xu, C. Wu, H. Yang, and L. An: J. Mater. Sci., 2010, vol. 45, pp. 4431–38.CrossRefGoogle Scholar
  30. 30.
    A. Kurt, I. Uygur, and E. Cete: J. Mater. Process. Technol., 2000, vol. 211, pp. 313–17.CrossRefGoogle Scholar
  31. 31.
    S.A. Alidokht, A. Abdollah-zadeh, S. Soleymani, and H. Assadi: Mater. Des., 2011, vol. 32, pp. 2727–33.CrossRefGoogle Scholar
  32. 32.
    L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian, and S. Natrajan: Mater. Des., 2009, vol. 20, pp. 2237–42.CrossRefGoogle Scholar
  33. 33.
    K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki: Mater. Sci. Eng. A, 2006, vol. 437, pp. 274–80.CrossRefGoogle Scholar
  34. 34.
    N. Suna and D. Apelian: Mater. Sci. Forum, 2009, vol. 618, p. 361.CrossRefGoogle Scholar
  35. 35.
    W. Wang, Q.Y. Shi, P. Liu, H.K. Li, and T. Li: J. Mater. Process. Technol., 2009, vol. 209, pp. 2099–2103.CrossRefGoogle Scholar
  36. 36.
    M.L. Santella, I. Engstrom, D. Storjohann, and T.Y. Pan: Scripta Mater., 2005, vol. 59, pp. 201–06.Google Scholar
  37. 37.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3323–36.CrossRefGoogle Scholar
  38. 38.
    Z.Y. Ma, S.R. Sharm, and R.S. Mishra: Scripta Mater., 2006, vol. 54, pp. 1623–26.CrossRefGoogle Scholar
  39. 39.
    S. Jana, R.S. Mishra, J.A. Baumann, and J.A. Grant: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2507–21.CrossRefGoogle Scholar
  40. 40.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 433, pp. 269–78.CrossRefGoogle Scholar
  41. 41.
    A.G. Rao, B.R.K. Rao, V.P. Deshmukh, A.K. Shah, and B.P. Kashyap: Mater. Des., 2009, vol. 63, pp. 2628–30.Google Scholar
  42. 42.
    Y. Jiang, D. Lu, and M. Zhou: Adv. Mater. Res., 2011, vol. 189, pp. 3601–03.CrossRefGoogle Scholar
  43. 43.
    K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743–49.CrossRefGoogle Scholar
  44. 44.
    J-Q. Su, T.W. Nelson, and C.J. Sterling: Mater. Sci. Eng. A, 2005, vol. 405, pp. 227–36.Google Scholar
  45. 45.
    R.W. Fonda, J.F. Bingert, and K.J. Colligan: Scripta Mater., 2004, vol. 51, pp. 243–48.CrossRefGoogle Scholar
  46. 46.
    N. Kumar, R.S. Mishra, C.S. Huskamp, and K.K. Sankaran: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5883–90.CrossRefGoogle Scholar
  47. 47.
    J-Q. Su, T.W. Nelson, and C.J. Sterling: Philos. Mag., 2006, vol. 86, pp. 1–24.CrossRefGoogle Scholar
  48. 48.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese: Scripta Mater., 2003, vol. 48, pp. 1451–55.CrossRefGoogle Scholar
  49. 49.
    P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179–89.CrossRefGoogle Scholar
  50. 50.
    A. Yazdipour, M.A. Shafiei, and K. Dehghani: Mater. Sci. Eng. A, 2009, vol. 527, pp. 192–97.CrossRefGoogle Scholar
  51. 51.
    S. Swanminathan, K. Oh-Ishi, A.P. Zhilyaev, C.B. Fuller, B. London, M.W. Mahoney, and T.R. McNelly: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 631–40.CrossRefGoogle Scholar
  52. 52.
    J.L. Lytton, C.R. Barrett, and O.D. Sherby: Trans. Am. Inst. Min. Metal. Petrol. Eng., 1965, vol. 233, pp. 1399–1405.Google Scholar
  53. 53.
    B.P. Kashyap, K. Mctaggart, and K. Tangri: Philos. Mag. A, 1998, vol. 57, pp. 97–103.CrossRefGoogle Scholar
  54. 54.
    R.K. Davis, V. Randle, and G.J. Marshall: Acta Mater., 1998, vol. 46, pp. 6021–32.CrossRefGoogle Scholar
  55. 55.
    G. Buffa, J. Hua, R. Shivpuri, and L. Fratini: Mater. Sci. Eng. A, 2006, vol. 419, pp. 381–88.CrossRefGoogle Scholar
  56. 56.
    J.L. Ning, D.M. Jiang, X.G. Fan, Z.H. Lai, Q.C. Meng, and D.L. Wang: Mater. Charact., 2008, vol. 59, pp. 306–11.CrossRefGoogle Scholar
  57. 57.
    T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, pp. 2789–2800.CrossRefGoogle Scholar
  58. 58.
    C.G. Rhodes, M.W. Mohoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton: Scripta Mater., 1997, vol. 36, pp. 69–75.CrossRefGoogle Scholar
  59. 59.
    L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1801–03.CrossRefGoogle Scholar
  60. 60.
    S. Fare, N. Lecis, and M. Vedani: J. Metall., 2011, vol. 1, pp. 1–8.CrossRefGoogle Scholar
  61. 61.
    F.J. Humpherys and M. Hatherly: in Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1995, pp. 24, 437.Google Scholar
  62. 62.
    R.K. Islamgaliev, R. Kuzel, S.N. Mikov, A.V. Igo, J. Burianek, F. Chmelik, and R.Z. Valiev: Mater. Sci. Eng., 1999, vol. 266, pp. 205–10.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • A. G. Rao
    • 1
    • 2
  • K. R. Ravi
    • 3
  • B. Ramakrishnarao
    • 2
  • V. P. Deshmukh
    • 2
  • A. Sharma
    • 4
  • N. Prabhu
    • 1
  • B. P. Kashyap
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology, BombayMumbaiIndia
  2. 2.Marine Materials DivisionNaval Materials Research LaboratoryAmbernath (East)India
  3. 3.Nanotech Research FacilityPSG Institute of Advanced StudiesCoimbatoreIndia
  4. 4.Department of Mechanical EngineeringIndian Institute of Technology, BombayMumbaiIndia

Personalised recommendations