Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1497–1507 | Cite as

Evolution of Texture and Microstructure in Commercially Pure Titanium with Change in Strain Path During Rolling

Article

Abstract

The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.

References

  1. 1.
    B.H. Hanson: Mater. Design, 1986, vol. 7, pp. 301–07.CrossRefGoogle Scholar
  2. 2.
    H. Inagaki: Z. Metallkd., 1992, vol. 83, pp. 40–46.Google Scholar
  3. 3.
    S. Noorbaksh and T.D. O’Brien: Mater. Sci. Eng., 1988, vol. 100, pp. 109–14.CrossRefGoogle Scholar
  4. 4.
    H.P. Lee, C.S. Esling, and H.J. Bunge: Textures Microstruct., 1988, vol. 7, pp. 317–37.CrossRefGoogle Scholar
  5. 5.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.CrossRefGoogle Scholar
  6. 6.
    Y. Zhong, F. Yin, and K. Nagai: J. Mater. Res., 2008, vol. 23, pp. 2954–66.CrossRefGoogle Scholar
  7. 7.
    H. Hu and R.S. Cline: Textures Microstruct., 1988, vols. 8–9, pp. 191–206.Google Scholar
  8. 8.
    S.H. Hong and D.N. Lee: J. Eng. Mater. Tech., 2002, vol. 124, pp. 13–22.CrossRefGoogle Scholar
  9. 9.
    M.Y. Huh, S.Y. Cho, and O. Engler: Mater. Sci. Eng. A, 2001, vol. 315, pp. 35–46.CrossRefGoogle Scholar
  10. 10.
    D. Kulhmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp. 1–41.CrossRefGoogle Scholar
  11. 11.
    B. Bay, N. Hamsen, D.A. Hughes, and D. Kulhmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.CrossRefGoogle Scholar
  12. 12.
    J.H. Schmitt, J.V. Fernandes, J.J. Grácio, and M.F. Vieira: Mater. Sci. Eng. A, 1991, vol. 147, pp. 143–54.CrossRefGoogle Scholar
  13. 13.
    T. Özturk: Scripta Metall., 1988, vol. 22, pp. 1611–16.CrossRefGoogle Scholar
  14. 14.
    J. Pospiech, Z. Jasienski, A. Litwora, A. Pitkowski, and J. Gryziecki: Proceedings of the Twelfth International Conference on Texture of Materials (ICOTOM-12), J.A. Szpunar, ed., Montreal, Canada, 1999, pp. 581–90.Google Scholar
  15. 15.
    A.K. Singh and R.A. Schwarzer: Mater. Sci. Eng. A, 2001, vol. 307, pp. 151–17.CrossRefGoogle Scholar
  16. 16.
    A.K. Singh and R.A. Schwarzer: Scripta Mater., 2001, vol. 44, pp. 375–80.CrossRefGoogle Scholar
  17. 17.
    S. Suwas, A.K. Singh, K. Narsimha Rao, and T. Singh: Z. Metallkd., 2002, vol. 93, pp. 918–27.Google Scholar
  18. 18.
    S. Suwas, A.K. Singh, K. Narsimha Rao, and T. Singh: Z. Metallkd., 2002, vol. 93, pp. 928–37.Google Scholar
  19. 19.
    S. Suwas, A.K. Singh, K. Narsimha Rao, and T. Singh: Z. Metallkd., 2003, vol. 93, pp. 1313–19.Google Scholar
  20. 20.
    S. Suwas and A.K. Singh: Mater. Sci. Eng. A, 2003, vol. 356, pp. 368–71.CrossRefGoogle Scholar
  21. 21.
    R. Garg, S. Ranganathan, and S. Suwas: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4582–92.CrossRefGoogle Scholar
  22. 22.
    R. Garg, N.P. Gurao, S. Ranganathan, and S. Suwas: Phil. Mag., 2011, vol. 91, pp. 4089–4108.CrossRefGoogle Scholar
  23. 23.
    N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.CrossRefGoogle Scholar
  24. 24.
    N.P. Gurao, S. Sethuraman, and S. Suwas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7739–50.CrossRefGoogle Scholar
  25. 25.
    W.F. Hosford: Met. Eng. Q., 1966, vol. 6, pp. 30–6.Google Scholar
  26. 26.
    K. Pawlik: Phys. Stat. Sol. (B), 1986, vol. 134, pp. 477–83.Google Scholar
  27. 27.
    R.A. Lebensohn and C.N. Tome: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  28. 28.
    C.N. Tome, G.R. Cannova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Metall. Mater., 1984, vol. 32 pp. 1637–53.Google Scholar
  29. 29.
    G.G. Yapici, C.N. Tomé, I.J. Beyerlein, I. Karaman, S.C. Vogel, and C. Liu: Acta Mater., 2009, vol. 57, pp. 4855–65.CrossRefGoogle Scholar
  30. 30.
    N.P. Gurao, R. Kapoor, and S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431–46.CrossRefGoogle Scholar
  31. 31.
    N.P. Gurao and S. Suwas: J. Mater. Res., 2011, vol. 26, no. 4, pp. 523–32.CrossRefGoogle Scholar
  32. 32.
    P.G. Patridge: Metall. Rev., 1967, vol. 12, pp. 169–94.CrossRefGoogle Scholar
  33. 33.
    N.P. Gurao, R. Kapoor, and S. Suwas: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2794–804.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Cummins Inc.NYUSA
  3. 3.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations