Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1388–1400 | Cite as

Effect of Aging on Microstructure and Shape Memory Properties of a Ni-48Ti-25Pd (At. Pct) Alloy

  • Taisuke T. Sasaki
  • B. Chad Hornbuckle
  • Ronald D. Noebe
  • Glen S. Bigelow
  • Mark L. Weaver
  • Gregory B. Thompson
Article

Abstract

The microstructure and properties of a precipitation-hardenable Ni-48Ti-25Pd (at. pct) shape memory alloy have been investigated as a function of various aging conditions. Both the hardness and martensitic transformation temperatures increased with increasing aging time up to 100 hours at 673 K (400 °C), while no discernable differences were observed after heat treatment at 823 K (550 °C), except for a slight decrease in hardness. For aging at 673 K (400 °C), these effects were attributed to the formation of nano-scale precipitates, while precipitation was absent in the 823 K (550 °C) heat-treated specimens. The precipitation-strengthened alloy exhibited stable pseudoelastic behavior and load-biased-shape memory response with little or no residual strains. The precipitates had a monoclinic base-centered structure, which is the same structure as the P-phase recently reported in Ni(Pt)-rich NiTiPt alloys. 3D atom probe analysis revealed that the precipitates were slightly enriched in Ni and deficient in Pd and Ti as compared with the bulk alloy. The increase in martensitic transformation temperatures and the superior dimensional stability during shape memory and pseudoelastic testing are attributed to the fine precipitate phase and its effect on matrix chemistry, local stress state because of the coherent interface, and the ability to effectively strengthen the alloy against slip.

References

  1. 1.
    K. Otsuka, X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511-678.CrossRefGoogle Scholar
  2. 2.
    K. Yamauchi, I. Ohkata, K. Tsuchiya, and S. Miyazaki (eds.): Shape Memory and Superelastic Alloys Technologies and Applications, Woodhead Publishing, Cambridge, UK, 2011.Google Scholar
  3. 3.
    J.E. Hanlon, S.R. Butler, R.J. Wasilewski: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1323-1327.Google Scholar
  4. 4.
    I.I. Kornilov, Y.Y. Kachur, O.K. Belousov: Phys. Met. Metall., 1971, vol. 32, pp. 420-422.Google Scholar
  5. 5.
    [5] W. Tang: Metall. Trans. A, 1997, vol. 28A, pp. 537-544.CrossRefGoogle Scholar
  6. 6.
    [6] K. Gall, H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643-4657.CrossRefGoogle Scholar
  7. 7.
    J.I. Kim, S. Miyazaki: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3301CrossRefGoogle Scholar
  8. 8.
    [8] J.I. Kim, S. Miyazaki: Acta Mater., 2005, vol. 53, pp. 4545-4554.CrossRefGoogle Scholar
  9. 9.
    N. Morgan: The Stability of NiTi Shape Memory Alloys and Actuator Applications, Thesis, Cranfield University, Shrivenham, England, 1999.Google Scholar
  10. 10.
    [10] C.H. Grossman, J. Frenzel, V. Sampath, T. Depka, G. Eggeler: Metall. Maters. Trans. A: 2009, vol. 40A, pp. 2530-2534.CrossRefGoogle Scholar
  11. 11.
    [11] M. Nishida, C.M. Wayman, T. Honma: Metall. Trans. A: 1986, vol. 17A, pp. 1505-1515.Google Scholar
  12. 12.
    [12] J. Khalil-Allafi, G. Eggeler, A. Dlouhy, W.W. Schmahl, C.H. Somsen: Mater. Sci. Eng. A: 2004, vol. 378, pp. 148-151.CrossRefGoogle Scholar
  13. 13.
    [13] N. Zhou, C. Shen, M.F-X. Wagner, G. Eggeler, N.J. Mills, Y. Wang: Acta Mater. 2010, vol. 58, pp. 6685-6694.CrossRefGoogle Scholar
  14. 14.
    [14] J. Ma, I. Karaman, R.D. Noebe: Inter. Mater. Rev., 2010, vol. 55, pp. 257-315.CrossRefGoogle Scholar
  15. 15.
    [15] P.G. Lindquist, C.M. Wayman: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, Ltd., Boston, MA, 1990, pp. 58-68.Google Scholar
  16. 16.
    [16] Y. Xu, K. Shimizu, K. Suzuki, K. Otsuka, T. Ueki, K. Mitose: Acta Mater., 1997, vol. 45, pp. 1503-1511.CrossRefGoogle Scholar
  17. 17.
    [17] Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, K. Mitose: Mater. Lett., 1998, vol. 36, pp. 85-94.CrossRefGoogle Scholar
  18. 18.
    [18] G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, R.D. Noebe: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3065-3079.CrossRefGoogle Scholar
  19. 19.
    [19] O. Rios, R.D. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, M. Kaufman: Proc SPIE, 2005, vol. 5761, pp. 376-387.CrossRefGoogle Scholar
  20. 20.
    J.H. Mulder, J.H. Mass, and J. Beyer: ICOMAT-92: International Conference on Martensitic Transformations, 1993, pp. 869–74.Google Scholar
  21. 21.
    [21] S.G. Hsieh, S.K. Wu: J. Alloys Comp., 1998, vol. 270, pp. 237-241.CrossRefGoogle Scholar
  22. 22.
    [22] S. Hsieh, S. Wu: Mater. Charact., 1998, vol. 41, pp. 151-162.CrossRefGoogle Scholar
  23. 23.
    [23] Z. Pu, H. Tseng, K. Wu: Proc SPIE, 1995, vol. 2442, pp. 171-178.CrossRefGoogle Scholar
  24. 24.
    S. Besseghini, E. Villa, A. Tuissi: Mater. Sci. Eng. A, 1999, vol. 273A, pp. 390-394.Google Scholar
  25. 25.
    [25] D. Angst, B. Thoma, M. Kao: J. Phys. IV, 1995, vol. C8, pp. 747-752.Google Scholar
  26. 26.
    [26] P. Olier, J. Brachet, J. Bechade, C. Foucher, G. Guenin: J. Phys. IV, 1995, vol. C8, pp. 741-746.Google Scholar
  27. 27.
    W. Cai, S. Tanaka, K.Otsuka: Mater. Sci. Forum, 2000, vol. 327, pp. 279-282.CrossRefGoogle Scholar
  28. 28.
    [28] K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.A. Chumlyakov, I.V. Kireeva: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2485-2497.CrossRefGoogle Scholar
  29. 29.
    [29] K.C. Atli, I. Karaman, R.D. Noebe, H.J. Maier: Scripta Mater., 2010, vol. 64, pp. 315-318.Google Scholar
  30. 30.
    [30] B. Kockar, I. Karaman, J.I. Kim, Y. Chumlyakov: Scripta Mater., 2006, vol. 54, pp. 2203-2208.CrossRefGoogle Scholar
  31. 31.
    [31] S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, K. Mitose: Mater. Lett. 1998, vol. 34, pp. 23-29.CrossRefGoogle Scholar
  32. 32.
    [32] L. Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R.D. Noebe, M.J. Mills: Acta Mater., 2010, vol. 58, pp. 4660-4673.CrossRefGoogle Scholar
  33. 33.
    [33] A.M. Sandu, K. Tsuchiya, M. Tabuchi, S. Yamamoto, Y. Todaka, M. Umemoto: Mater. Trans. JIM: 2007, vol. 48, pp. 432-438.CrossRefGoogle Scholar
  34. 34.
    [34] A.M. Sandu, K. Tsuchiya, S. Yamamoto, Y. Todaka, M. Umemoto: Mater. Sci. Forum, 2007, vol. 539-543, pp. 3163-3168.CrossRefGoogle Scholar
  35. 35.
    [35] X.L. Meng, W. Cai, Y.D. Fu, Q.F. Li, J.X. Zhang, L.C. Zhao: Intermetallics, 2008, vol. 16, pp. 698-705.CrossRefGoogle Scholar
  36. 36.
    [36] X.L. Meng, W. Cai, Y.F. Zheng, L.C. Zhao: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 666-670.Google Scholar
  37. 37.
    [37] X.L. Meng, W. Cai, F. Chen, L.C. Zhao: Scripta Mater., 2006, vol. 54, pp. 1599-1604.CrossRefGoogle Scholar
  38. 38.
    [38] G.S. Bigelow, A. Garg, S.A. Padula, D.J. Gaydosh, R.D. Noebe: Scripta Mater., 2011, vol. 64, pp. 725-728.CrossRefGoogle Scholar
  39. 39.
    [39] K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131-139.CrossRefGoogle Scholar
  40. 40.
    L.A. Giannuzzi, Microsc. Microanal., 2006, vol. 12, pp. 1260-1261.CrossRefGoogle Scholar
  41. 41.
    S.A. Padula, D.J. Gaydosh, R.D. Noebe, G.S. Bigelow, A. Garg, D. Lagoudas, I. Karaman, K.C. Atli: Proc. SPIE., 2008, vol. 6929, pp. 692912.Google Scholar
  42. 42.
    D. Goldberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki, and H. Horikawa: Intermetallics, 1995, vol. 3, pp. 35–46.Google Scholar
  43. 43.
    [43] W. Tirry, D. Schryvers: Acta Mater. 2005, vol. 53, pp. 1041-1049.CrossRefGoogle Scholar
  44. 44.
    [44] W. Tirry, D. Schryvers: Nature Materials, 2009, vol. 8, pp. 752-757.CrossRefGoogle Scholar
  45. 45.
    [45] C. Booth-Morrison, Y. Zhou, R.D. Noebe, D.N. Seidman: Philos. Mag. 2010, vol. 90, pp. 219-235.CrossRefGoogle Scholar
  46. 46.
    [46] P. Schlossmacher: Mater. Lett. 1997, vol. 31, pp. 119-125.CrossRefGoogle Scholar
  47. 47.
    [47] L. Bataillard, J-E Bidaux, R. Gotthardt: Philos. Mag. A, 1998, vol. 78A, pp. 327-344.CrossRefGoogle Scholar
  48. 48.
    [48] A.J. Ardell, R.B. Nicholson, J.D. Eshelby: Acta Metall. 1966, vol. 14, pp. 1295-1309.CrossRefGoogle Scholar
  49. 49.
    G. Effenberg and S. Ilyenko (eds.): Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Materials Science International Services GmbH, Stuttgart, Germany. Chapter 10, p. 37.Google Scholar
  50. 50.
    Y. Chemisky, B. Piotrowski, T.B. Zineb, and E. Patoor: ESOMAT, 2009, p. 03004.Google Scholar
  51. 51.
    M. Kato, H-R. Pak: Phys. Stat. Sol., 1984, vol. 123, pp. 415-424.CrossRefGoogle Scholar
  52. 52.
    M. Nishida, T. Honma : Scripta Metall., 1984, vol. 18, pp. 1293-1298.CrossRefGoogle Scholar
  53. 53.
    V.I. Zeldovich, G.A. Sobyanina, V.G. Pushin: Scripta Mater., 1997, vol. 37, pp. 79-84.CrossRefGoogle Scholar
  54. 54.
    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y.I. Chumlyakov, M. Asai: Mater. Sci. Eng. A, 2001, vol. 312, pp. 196-206.CrossRefGoogle Scholar
  55. 55.
    J. Khalil-Allafi, A. Dlouhy, G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255-4274.CrossRefGoogle Scholar
  56. 56.
    A. Dlouhy, J. Khalil-Allafi, G. Eggeler: Philos. Mag., 2003, vol. 83, pp. 339-363.CrossRefGoogle Scholar
  57. 57.
    J. Khalil-Allafi, X. Ren, G. Eggeler: Acta Mater. 2002, vol. 50, pp. 793-803.CrossRefGoogle Scholar
  58. 58.
    J. Wu, Q. Tian: Intermetallics: 2003, vol. 11, pp. 773-778.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Taisuke T. Sasaki
    • 1
    • 2
  • B. Chad Hornbuckle
    • 1
  • Ronald D. Noebe
    • 3
  • Glen S. Bigelow
    • 3
  • Mark L. Weaver
    • 1
  • Gregory B. Thompson
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of AlabamaALUSA
  2. 2.National Institute for Materials ScienceTsukubaJapan
  3. 3.Structures and Materials DivisionNASA Glenn Research CenterClevelandUSA

Personalised recommendations