Metallurgical and Materials Transactions A

, Volume 44, Issue 1, pp 87–93 | Cite as

Assessing Local Structure in PbZn1/3Nb2/3O3 Using Diffuse Scattering and Reverse Monte Carlo Refinement

  • M. Paściak
  • A. P. Heerdegen
  • D. J. Goossens
  • R. E. Whitfield
  • A. Pietraszko
  • T. R. Welberry
Symposium: Neutron and X-Ray Studies of Advanced Materials V


We use an extensive X-ray diffuse scattering dataset collected from the relaxor ferroelectric PbZn1/3Nb2/3O3 to study the feasibility of refining a nanoscale structure with the reverse Monte Carlo method. Six integer and non-integer reciprocal sections are used with a total number of nearly 105 symmetry-independent data points. Very good agreement between observed and calculated diffuse scattering patterns is achieved with rather subtle diffuse intensity modulations being satisfactorily reproduced. The correlations within the refined local structure are related to the possible physical mechanisms behind them. We discuss the ambiguity of the obtained results and feasible constraining schemes.


Diffuse Scattering Pair Distribution Function Reverse Monte Carlo Diffuse Scattering Intensity Reverse Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the Australian Research Council for support through its Discovery Projects program. REW thanks AINSE for the support of postgraduate research award. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Kevin Beyer is acknowledged for his help at the 11ID-B beamline at the Advanced Photon Source. This work was supported by the NCI National Facility at the ANU.


  1. 1.
    T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, International Union of Crystallography Monographs on Crystallography, Oxford University Press, 2004Google Scholar
  2. 2.
    Honjo G., Kodera S., Kitamura N. (1964) J. Phys. Soc. Jpn. 19(3): 351–367CrossRefGoogle Scholar
  3. 3.
    Harada J., Honjo G. (1967) J. Phys. Soc. Jpn. 22(1):45–57CrossRefGoogle Scholar
  4. 4.
    Comes R., Lambert M., Guinier A. (1968) Solid State Commun. 6(10):715–719CrossRefGoogle Scholar
  5. 5.
    J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, and L. Bellaiche: Phys. Rev. Lett., 2008, vol. 101, p. 167402.Google Scholar
  6. 6.
    A. Bokov and Z.-G. Ye: J. Mater. Sci., 2006, vol. 41, pp. 31–52. DOI: 10.1007/s10853-005-5915-7.
  7. 7.
    Hlinka J. (2012) J. Adv. Dielectrics. 2(2):1241006CrossRefGoogle Scholar
  8. 8.
    Terado Y., Kim SJ., Moriyoshi C., Kuroiwa Y., Iwata M.,Takata M. (2006) Jpn. J. Appl. Phys. 45(9B):7552–7555CrossRefGoogle Scholar
  9. 9.
    Kuwata J., Uchino K., Nomura S. (1982) Jpn. J. Appl. Phys. 21:1298CrossRefGoogle Scholar
  10. 10.
    Kuwata J., Uchino K., Nomura S. (1981) Ferroelectrics. 37:579–582CrossRefGoogle Scholar
  11. 11.
    Forrester J.S., Kisi E.H., Knight K.S., Howard C.J. (2006) J. Phys. Condens. Matter. 18(19):L233CrossRefGoogle Scholar
  12. 12.
    Kisi EH., Forrester JS. (2005) J. Phys. Condens. Matter. 17(36):L381CrossRefGoogle Scholar
  13. 13.
    Bonneau P., Garnier P., Husson E., Morell A. (1989) Mater. Res. Bull. 24(2):201–06CrossRefGoogle Scholar
  14. 14.
    Bonneau P., Garnier P., Calvarin G., Husson E., Gavarri J.R., Hewat A.W., Morell A. (1991) J. Solid State Chem. 91(2):350–361CrossRefGoogle Scholar
  15. 15.
    Stock C., Birgeneau R.J., Wakimoto S., Gardner J.S., Chen W., Ye Z.-G., Shirane G. (2004) Phys Rev. B 69:094104CrossRefGoogle Scholar
  16. 16.
    H. You and Q.M. Zhang: Phys. Rev. Lett., 1997, vol. 79 (20), pp. 3950–53.Google Scholar
  17. 17.
    Hirota K., Ye Z.-G., Wakimoto S., Gehring P.M., Shirane G. (2002) Phys Rev. B 65(10):104105CrossRefGoogle Scholar
  18. 18.
    Welberry T. R., Gutmann M.J., Woo H., Goossens D.J. , Xu G., Stock C., Chen W., Ye Z.-G. (2005) J. Appl. Crystallogr. 38(4):639–647CrossRefGoogle Scholar
  19. 19.
    Welberry T.R., Goossens D.J., Gutmann M.J. (2006) Phys. Rev. B. 74(22):224108CrossRefGoogle Scholar
  20. 20.
    Whitfield R.E., Goossens D.J., Studer A.J., Forrester J.S. (2012) Metall. Mater. Trans. A 43A:1423–1428CrossRefGoogle Scholar
  21. 21.
    Whitfield R.E., Goossens D.J., and Studer A.J. (2012) Metall. Mater. Trans. A 43A:1429–1433CrossRefGoogle Scholar
  22. 22.
    Mihailova B., Maier B., Paulmann C., Malcherek T., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. (2008) Phys. Rev. B., 77:174106CrossRefGoogle Scholar
  23. 23.
    Maier B., Mihailova B., Paulmann C., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. (2009) Phys. Rev. B 79:224108CrossRefGoogle Scholar
  24. 24.
    Ganesh P., Cockayne E., Ahart M., Cohen R.E., Burton B., Hemley R.J., Ren Y., Yang W., Ye Z.-G. (2010) Phys. Rev. B. 81(14):144102CrossRefGoogle Scholar
  25. 25.
    Paściak M., Wolcyrz M., Pietraszko A. (2007) Phys. Rev. B. 76(1):014117CrossRefGoogle Scholar
  26. 26.
    Welberry T.R., Goossens D.J. (2008) J. Appl. Crystallogr. 41(3):606–614CrossRefGoogle Scholar
  27. 27.
    T.R. Welberry: Metall. Mater. Trans. A, 2008, 39A, pp. 3170–3178. DOI: 10.1007/s11661-008-9572-8.
  28. 28.
    Bosak A., Chernyshov D., Vakhrushev S., Krisch M. (2012) Acta Crystallogr. Sect. A. 68(1):117–123CrossRefGoogle Scholar
  29. 29.
    McGreevy R.L., Pusztai L. (1988) Mol. Simul. 1(6):359–367CrossRefGoogle Scholar
  30. 30.
    Nield V.M., Keen D.A., McGreevy R.L. (1995) Acta Crystallogr. Sect. A 51(5):763–771CrossRefGoogle Scholar
  31. 31.
    Krawczyk J., Pietraszko A., Kubiak R., Lukaszewicz K. (2003) Acta Crystallogr. Sect. B. 59(3):384–392CrossRefGoogle Scholar
  32. 32.
    Lukaszewicz K., Pietraszko A., Kucharska M. (2005) Acta Crystallogr. Sect. B. 61(5):473–480CrossRefGoogle Scholar
  33. 33.
    R.B. Neder and Th. Proffen. Diffuse Scattering and Defect Structure Simulations. Oxford University Press, Oxford. 2009.Google Scholar
  34. 34.
    Proffen Th., Welberry T.R. (1997) Acta Crystallogr. Sect. A. 53(2):202–216CrossRefGoogle Scholar
  35. 35.
    M.A. Estermann and W. Steurer. Phase Transit. 67(1):165–195CrossRefGoogle Scholar
  36. 36.
    Proffen Th., Neder R. B. (1997) J. Appl. Crystallogr. 30(2):171–175CrossRefGoogle Scholar
  37. 37.
    Burkovsky R.G., Filimonov A.V., Rudskoy A.I., Hirota K., Matsuura M., Vakhrushev S.B. (2012) Phys. Rev. B. 85:094108CrossRefGoogle Scholar
  38. 38.
    M.A. Akbas and P.K. Davies (1997) J. Am. Ceram. Soc. 80(11):2933–2936CrossRefGoogle Scholar
  39. 39.
    Yan Y., Pennycook S.J., Xu Z., Viehland D. (1998) Appl. Phys. Lett. 72(24):3145–3147CrossRefGoogle Scholar
  40. 40.
    S. Vakhrushev, A. Nabereznov, S.K. Sinha, Y.P. Feng, and T. Egami: J. Phys. Chem. Solids, 1996, vol. 57 (10), pp. 1517–1523.Google Scholar
  41. 41.
    Vakhrushev S.B., Kvyatkovsky B.E., Naberezhnov A.A., Okuneva N.M., Toperverg B.P. (1989) Ferroelectrics. 90(1):173–176CrossRefGoogle Scholar
  42. 42.
    Viehland D., Li JF., Jang S.J., Eric Cross L., Wuttig M. (1991) Phys. Rev. B. 43:8316–8320CrossRefGoogle Scholar
  43. 43.
    M. Paściak, T.R. Welberry, J. Kulda, M. Kempa, and J. Hlinka: Phys. Rev. B, 2012, vol. 84 (22), p. 224109.CrossRefGoogle Scholar
  44. 44.
    Jeong I.-K., Darling TW., Lee J.K., Proffen Th., Heffner R.H., Park J.S., Hong K.S., Dmowski W., Egami T. (2005) Phys. Rev. Lett. 94(14):147602CrossRefGoogle Scholar
  45. 45.
    Hlinka J., Kamba S., Petzelt J., Kulda J., Randall C.A., Zhang S.J. (2003) J. Phys. Condens. Matter. 15(24):4249CrossRefGoogle Scholar
  46. 46.
    Stock C., Van Eijck L., Fouquet P., Maccarini M., Gehring P.M., Xu G., Luo H., Zhao X., Li J.-F., Viehland D (2010) Phys. Rev. B. 81:144127CrossRefGoogle Scholar
  47. 47.
    Welberry T.R. (1986) J. Appl. Crystallogr. 19(5):382–389CrossRefGoogle Scholar
  48. 48.
    Swainson I.P., Stock C., Gehring P.M., Xu G., Hirota K., Qiu Y., Luo H., Zhao X., Li J.-F., Viehland D. (2009) Phys. Rev. B. 79(22):224301CrossRefGoogle Scholar
  49. 49.
    Hlinka J., Ondrejkovic P., Kempa M., Borissenko E., Krisch M., Long X., Ye Z.-G. (2011) Phys. Rev. B. 83(14):140101CrossRefGoogle Scholar
  50. 50.
    Baake M., Grimm U. (2009) Phys. Rev. B. 79:020203CrossRefGoogle Scholar
  51. 51.
    Baba-Kishi K.Z., Pasciak M. (2010) J. Appl. Crystallogr. 43(1):140–150CrossRefGoogle Scholar
  52. 52.
    Maier B. J., Welsch A.-M., Mihailova B., Angel R.J., Zhao J., Paulmann C., Engel J.M., Marshall W.G., Gospodinov M., Petrova D., Bismayer U. (2011) Phys. Rev. B. 83:134106CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • M. Paściak
    • 1
  • A. P. Heerdegen
    • 1
  • D. J. Goossens
    • 1
  • R. E. Whitfield
    • 1
  • A. Pietraszko
    • 2
  • T. R. Welberry
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Institute of Low Temperature and Structure Research, Polish Academy of SciencesWrocławPoland

Personalised recommendations