Metallurgical and Materials Transactions A

, Volume 44, Issue 2, pp 1010–1022 | Cite as

Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

  • Kwai S. Chan
  • Marie Koike
  • Robert L. Mason
  • Toru Okabe


Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.


Fatigue Fatigue Crack Fatigue Life Fatigue Crack Initiation Rolled Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partially supported by a Research Grant DE018395 from the National Institutes of Health/National Institute of Dental and Craniofacial Research, Bethesda, MD 20892.


  1. 1.
    S. Das, M. Wohlert, J.J. Beaman, and D.L. Bourell: JOM, 1998, vol. 50, pp. 17–20.CrossRefGoogle Scholar
  2. 2.
    L. Lü, J.Y.H. Fuh, and Y.S. Wong: Laser-Induced Materials and Processes for Rapid Prototyping, Kluwer Academic Publishers, Boston, 2001.CrossRefGoogle Scholar
  3. 3.
    P.A. Kobryn and S.L. Semiatin: JOM, 2001, vol. 53, pp. 40–42.CrossRefGoogle Scholar
  4. 4.
    P.A. Kobryn and S.L. Semiatin: Proceedings of the 12th Solid Freeform Fabrication Symposium, 2001, Austin, TX, pp. 179–86.Google Scholar
  5. 5.
    L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, and S. Collins: Proceedings of the 20th International Solid Freeform Symposium, Austin, TX, 2009, pp. 374–97.Google Scholar
  6. 6.
    L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker: Acta Mater., 2010, vol. 58, pp. 1887–94.CrossRefGoogle Scholar
  7. 7.
    L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J-P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.Google Scholar
  8. 8.
    E. Brandl, C. Leyens, and F. Palm: Trends in Aerospace Manufacturing 2009 International Conference, IOP Conference Series: Materials Science and Engineering, IOP Publishing, Philadelphia, 2011, vol. 26, 012004.Google Scholar
  9. 9.
    E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Mater. Des., 2012, vol. 34, pp. 159–69.CrossRefGoogle Scholar
  10. 10.
    M.E. Kinsella: AFRL-RX-WP-TP-2008-4318, Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, Air Force Materiel Command, United States Air Force, March 2008.Google Scholar
  11. 11.
    A.B. Spierings, G. Levy, L. Labhart, and K. Wegener: The 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, September 28 to October 1, 2011, Leiria, Portugal.Google Scholar
  12. 12.
    L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Mater. Charact., 2009, vol. 60, pp. 96–105.CrossRefGoogle Scholar
  13. 13.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker: J. Mech. Behav. Biomed. Mater., 2009, vol. 2, pp. 20–32.CrossRefGoogle Scholar
  14. 14.
    G.V. Joshi, Y. Duan, J. Neidigh, M. Koike, G. Chahine, R. Kovacevic, T. Okabe, and J.A. Griggs: J. Dent. Res., 2010, vol. 89 (Spec Iss B), p. 213.Google Scholar
  15. 15.
    E. Amsterdam and G.A. Kool: ICAF 2009, Bridging the Gap Between Theory and Operational Practice, Part 8, 2009, pp. 1261–74.Google Scholar
  16. 16.
    J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O.S. Es-Said: J. Mater. Eng. Perform., 2011, vol. 20 (2), pp. 203–12.CrossRefGoogle Scholar
  17. 17.
    M. Koike, P. Greer, K. Owen, L.E. Murr, S.M. Gaytan, E. Martinez, and T. Okabe: Materials, 2011, vol. 4 (10), pp. 1776–92.CrossRefGoogle Scholar
  18. 18.
    S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3216–27.CrossRefGoogle Scholar
  19. 19.
    E. Brinksmeier, G. Levy, and A.B. Spierings: CIRP Ann. Manuf. Technol., 2010, vol. 59 (1), pp. 601–06.CrossRefGoogle Scholar
  20. 20.
    C. Leinenback, B. Schwilling, and D. Eifler: Mater. Sci. Eng. C, 2005, vol. 25, pp. 321–29.CrossRefGoogle Scholar
  21. 21.
    K.S. Chan: Int. J. Fatigue, 2010, vol. 32, pp. 1428–47.CrossRefGoogle Scholar
  22. 22.
    D. Taylor and O. M. Clancy: Fatigue. Fract. Eng. Mater. Struct., 1991, vol. 14, pp. 329–36.CrossRefGoogle Scholar
  23. 23.
    S. Yue, R.M. Pillar, and G.C. Weatherly: J. Biomed. Mater. Res., 1984, vol. 18, pp. 1043–58.CrossRefGoogle Scholar
  24. 24.
    M.W. Bidez and C.E. Misch: Dental Implant Prosthetics, C.E. Misch, ed., Ch. 19, Elsevier Mosby, St Louis, MO, 2005, pp. 309–21.Google Scholar
  25. 25.
    C.E. Misch and M.W. Bidez: Dental Implant Prosthetics, C.E. Misch, ed., Ch. 20, Elsevier Mosby, St Louis, MO, 2005, pp. 322–49.Google Scholar
  26. 26.
    ASM Handbook Committee: Metals Handbook, 9th ed., vol. 9. Metallography and Microstructures, American Society for Metals, Metals Park, OH, 1985.Google Scholar
  27. 27.
    Y. Hochberg and A.C. Tamhane: Multiple Comparison Procedures, John Wiley &Sons, New York, NY, 1987.CrossRefGoogle Scholar
  28. 28.
    E.L. Kaplan and P. Meier: J. Am. Stat. Assoc., 1958, vol. 53, pp. 457–81.CrossRefGoogle Scholar
  29. 29.
    K.S. Chan, M. Koike, B.W. Johnson, and T. Okabe: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 171–80.CrossRefGoogle Scholar
  30. 30.
    M. Koike, D. Jacobson, K.S. Chan, and T. Okabe: Dent. Mater. J., 2009, vol. 28 (5), pp. 587–94.CrossRefGoogle Scholar
  31. 31.
    R.E. Peterson: Stress Concentration Factors, John Wiley and Sons, New York, 1974.Google Scholar
  32. 32.
    N. Chen and F.V. Lawrence: Advances in Fatigue Crack Closure Measurements and Analysis: Second Volume, ASTM STP 1343, R.C. McClung and J.C. Newman, Jr., eds., ASTM, West Conshohocken, PA, 1999, pp. 351–66.Google Scholar
  33. 33.
    S.J. Hudak, Jr., K.S. Chan, G.G. Chell, Y-D. Lee, and R.C. McClung: Proceedings of David L. Davidson Symposium on Fatigue, K.S. Chan, P.K. Liaw, R.S. Bellows, T.C. Zogas, and W.O. Soboyejo, eds., TMS, Warrendale, PA, 2002, pp. 107–20.Google Scholar
  34. 34.
    D. Broek: Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, The Netherlands, 1978, p. 76.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Kwai S. Chan
    • 1
  • Marie Koike
    • 2
    • 3
  • Robert L. Mason
    • 4
  • Toru Okabe
    • 2
  1. 1.Mechanical Engineering DivisionSouthwest Research InstituteSan AntonioUSA
  2. 2.Baylor College of DentistryTexas A&M Health Science CenterDallasUSA
  3. 3.Nippon Dental University School of Life DentistryTokyoJapan
  4. 4.Fuels and Lubricants Research DivisionSouthwest Research InstituteSan AntonioUSA

Personalised recommendations