Metallurgical and Materials Transactions A

, Volume 44, Issue 2, pp 968–977 | Cite as

Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V

  • Fude WangEmail author
  • Stewart Williams
  • Paul Colegrove
  • Alphons A. Antonysamy


Wire and arc additive manufacturing (WAAM) is a novel manufacturing technique in which large metal components can be fabricated layer by layer. In this study, the macrostructure, microstructure, and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated. The macrostructure of the arc-deposited Ti-6Al-4V was characterized by epitaxial growth of large columnar prior-β grains up through the deposited layers, while the microstructure consisted of fine Widmanstätten α in the upper deposited layers and a banded coarsened Widmanstätten lamella α in the lower layers. This structure developed due to the repeated rapid heating and cooling thermal cycling that occurs during the WAAM process. The average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti-6Al-4V bar (MIL-T 9047); however, the ductility was similar and, importantly, the mean fatigue life was significantly higher. A small number of WAAM specimens exhibited early fatigue failure, which can be attributed to the rare occurrence of gas pores formed during deposition.


Fatigue Fatigue Life Weld Pool Additive Manufacture Fusion Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the Cranfield Innovative Manufacturing Research Centre (IMRC) for funding the project, with the original funding being provided by EPSRC and Bombardier Aerospace, Belfast, Northern Ireland, who also carried out the tensile and fatigue testing.


  1. 1.
    G. Lutjering and J.C. Williams: Titanium, 2nd ed., Springer, Berlin, 2007, p. 8.Google Scholar
  2. 2.
    C.H. Che-Harona and A. Jawaidb: J. Mater. Process. Technol., 2005, vol. 166, pp. 188–92.CrossRefGoogle Scholar
  3. 3.
    E.O. Ezugwu and Z.M. Wang: J. Mater. Process. Technol., 1997, vol. 68, pp. 262–74.CrossRefGoogle Scholar
  4. 4.
    D.M. Keicher, W.D. Miller, J.E. Smugeresky, and J.A. Romero: TMS Annual Meeting, San Antonio, TX, 1998, pp. 369–77.Google Scholar
  5. 5.
    C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J.E. Smugereskey, T. Romero, D. Greene, and D. Reckaway: Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICALEO 98). Laser Institute of America. 1998. vol. E. pp. 1–7.Google Scholar
  6. 6.
    G. K. Lewis and E. Schlienger: Mater. Des., 2000, vol. 21, pp. 417–23.CrossRefGoogle Scholar
  7. 7.
    D. M. Keicher and J. E. Smugeresky: JOM, 1997, vol. 49, pp. 51–4.CrossRefGoogle Scholar
  8. 8.
    G. Lutjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32–45.CrossRefGoogle Scholar
  9. 9.
    C. Bezencon, A. Schnell, and W. Kurz: Scripta Mater, 2003, vol. 49, pp. 705–9.CrossRefGoogle Scholar
  10. 10.
    W. Kurz, C. Bezencon, and M. Caumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.CrossRefGoogle Scholar
  11. 11.
    M. Gaumann, C. Bezencon, P. Canalis, and W. Kurz: Acta Metall., 2001, vol. 49, pp. 1051–62.Google Scholar
  12. 12.
    F. Wang, S. Williams, and M. Rush: Int. J. Adv. Manuf. Technol., 2011, vol. 57, pp. 597–603.CrossRefGoogle Scholar
  13. 13.
    B. Baufeld and O. Van der Biest: Sci. Technol. Adv. Mater., 2009, vol. 10, pp. 1–10.CrossRefGoogle Scholar
  14. 14.
    F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang: J. Mater. Process. Technol., 2012, vol. 212, pp. 1377–86.CrossRefGoogle Scholar
  15. 15.
    B. Baufeld, E. Brandl, and O. Biest: J. Mater. Process. Technol., 2011, vol. 211, pp. 1146–58.CrossRefGoogle Scholar
  16. 16.
    S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1861–7.CrossRefGoogle Scholar
  17. 17.
    S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1869–79.CrossRefGoogle Scholar
  18. 18.
    K.M.B. Taminger and R.A. Hafley: NATO/RTOAVT-139 Specialists’ Meeting on Cost Effective Manufacture via Net Shape Processing, NATO, Amsterdam, 2006. pp. 9–25.Google Scholar
  19. 19.
    J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 8327–39.CrossRefGoogle Scholar
  20. 20.
    J. W. Elmer, T.A. Palmer, and J. Wong: J. Appl. Phys., 2003, vol. 93, pp. 1941–7.CrossRefGoogle Scholar
  21. 21.
    D.L. Hallum and W.A. Baeslack: WELD J., 1990, vol. 69, pp. 326s–36s.Google Scholar
  22. 22.
    S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3422–34.CrossRefGoogle Scholar
  23. 23.
    F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951–62.CrossRefGoogle Scholar
  24. 24.
    I. Bantounas, D. Dye, and T.C. Lindley: Acta Mater., 2010, vol. 58, pp. 3908–18.CrossRefGoogle Scholar
  25. 25.
    A.B. Short: Mater. Sci. Technol., 2009, vol. 25, pp. 309–24.CrossRefGoogle Scholar
  26. 26.
    P. Castany, F. Pettinari-Sturmel, J. Douin, and A.Coujou: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 719–22.CrossRefGoogle Scholar
  27. 27.
    S. Suri, G.B. Viswanathan, T. Neeraj, D.-H. Hou, and M.J. Mills: Acta Mater, 1999, vol. 47, pp. 1019–34.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Fude Wang
    • 1
    Email author
  • Stewart Williams
    • 1
  • Paul Colegrove
    • 1
  • Alphons A. Antonysamy
    • 2
    • 3
  1. 1.Welding Engineering and Laser Processing CentreCranfield UniversityBedfordshireU.K.
  2. 2.School of Materials, University of ManchesterManchesterU.K.
  3. 3.Additive Manufacturing R&D CentreGKN AerospaceBristolU.K.

Personalised recommendations