Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 2, pp 738–746 | Cite as

Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

  • Ke Huang
  • Dennis D. KeiserJr.
  • Yongho Sohn
Article

Abstract

U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning’s formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

Keywords

Diffusion Couple Interdiffusion Coefficient Atomic Mobility Thermodynamic Factor Regular Solution Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This study was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), the National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the purpose of the U.S. Government.

References

  1. 1.
    Keiser D, Hayes S, Meyer M, Clark C. JOM 2003;55:55.CrossRefGoogle Scholar
  2. 2.
    Snelgrove JL, Hofman GL, Meyer MK, Trybus CL, Wiencek TC. Nucl Eng Des 1997;178:119.CrossRefGoogle Scholar
  3. 3.
    Lemoine P, Wachs D (2007) Advanced Nuclear Fuel Cycles and Systems, Boise, Idaho.Google Scholar
  4. 4.
    Meyer MK, Hofman GL, Hayes SL, Clark CR, Wiencek TC, Snelgrove JL, Strain RV, Kim KH. J Nucl Mater 2002;304:221.CrossRefGoogle Scholar
  5. 5.
    Leenaers A, Van den Berghe S, Koonen E, Jarousse C, Huet F, Trotabas M, Boyard M, Guillot S, Sannen L, Verwerft M. J Nucl Mater 2004;335:39.CrossRefGoogle Scholar
  6. 6.
    Perez E, Yao B, Keiser DD, Sohn YH. J Nucl Mater 2010;402:8.CrossRefGoogle Scholar
  7. 7.
    Keiser DD, Jue JF, Yao B, Perez E, Sohn Y, Clark CR. J Nucl Mater 2011;412:90.CrossRefGoogle Scholar
  8. 8.
    Yao B, Perez E, Keiser Jr DD, Jue J-F, Clark CR, Woolstenhulme N, Sohn Y. J Alloys Compd 2011;509:9487.CrossRefGoogle Scholar
  9. 9.
    Perez E, Keiser D, Sohn Y. Metall Mater Trans A 2011;42:3071.CrossRefGoogle Scholar
  10. 10.
    Leenaers A, Van den Berghe S, Van Renterghem W, Charollais F, Lemoine P, Jarousse C, Rohrmoser A, Petry W. J Nucl Mater 2011;412:41.CrossRefGoogle Scholar
  11. 11.
    Liu X, Lu TC, Xing ZH, Qian DZ. Rare Metal Mat Eng 2011;40:1125.Google Scholar
  12. 12.
    Mazaudier F, Proye C, Hodaj F. J Nucl Mater 2008;377:476.CrossRefGoogle Scholar
  13. 13.
    Komar C, Mirandou M, Aricó S, Balart S, Gribaudo L (2009) J Nucl Mater 395:162.CrossRefGoogle Scholar
  14. 14.
    Kim Y, Hofman G, Ryu H, Hayes S. J Phase Equilib Diff 2006;27:614.Google Scholar
  15. 15.
    Ryu H, Park J, Kim C, Kim Y, Hofman G. J Phase Equilib Diff 2006;27:651.Google Scholar
  16. 16.
    Lundberg LB. J Nucl Mater 1989;167:64.CrossRefGoogle Scholar
  17. 17.
    Adda Y, Philibert J. Compt. rend. 1958;246:113.Google Scholar
  18. 18.
    Adda Y, Kirianenko A. J Nucl Mater 1959;1:120.CrossRefGoogle Scholar
  19. 19.
    Adda Y, Kirianenko A, Mairy C. J Nucl Mater 1959;1:300.CrossRefGoogle Scholar
  20. 20.
    Adda Y, Kirianenko A. J Nucl Mater 1962;6:130.CrossRefGoogle Scholar
  21. 21.
    Pavlinov L, Nakonechnikov A, Bykov V. Atomic Energy 1965;19:1495.CrossRefGoogle Scholar
  22. 22.
    Fedorov GB, Smirnov EA, Zhomov FI, Gusev VN, Paraev SA. Atomic Energy 1971;31:1280.CrossRefGoogle Scholar
  23. 23.
    Adda Y, Kirianenko A. J Nucl Mater 1962;6:135.CrossRefGoogle Scholar
  24. 24.
    Manning J. Metall Mater Trans B 1970;1:499.CrossRefGoogle Scholar
  25. 25.
    H. Mehrer, ed.: Diffusion in Solid, Springer, Berlin, 2007.Google Scholar
  26. 26.
    Loo FV. Prog Solid State Chem 1990;20:47.CrossRefGoogle Scholar
  27. 27.
    Parida SC, Dash S, Singh Z, Prasad R, Venugopal V. J Phys Chem Solids 2001;62:585.CrossRefGoogle Scholar
  28. 28.
    Brandes EA, Brook GB (1992)Smithells Metals Reference Book, 7th edn. Butterworth-Heinemann, Bodmin, U.K.Google Scholar
  29. 29.
    Berche A, Dupin N, Guéneau C, Rado C, Sundman B, Dumas JC. J Nucl Mater 2011;411:131.CrossRefGoogle Scholar
  30. 30.
    Shewmon P (1989) Diffusion in Solids. Wiley, New York.Google Scholar
  31. 31.
    Ogata T, Akabori M, Itoh A, Ogawa T. J Nucl Mater 1996;232:125.CrossRefGoogle Scholar
  32. 32.
    Hall LD. J. Chem. Phys. 1953;21:3.CrossRefGoogle Scholar
  33. 33.
    Zhang X, Cui YF, Xu GL, Zhu WJ, Liu HS, Yin BY, Jin ZP. J Nucl Mater 2010;402:15.CrossRefGoogle Scholar
  34. 34.
    Brewer L, Lamoreaux RH, Ferro R, Marazza R, Girgis K. Atomic energy review 1980;7:336.Google Scholar
  35. 35.
    Garg SP, Ackermann RJ. J Nucl Mater 1977;64:265.CrossRefGoogle Scholar
  36. 36.
    Vamberskii YV, Udovskiy AL, Ivanov OS. J Nucl Mater 1973;46:192.CrossRefGoogle Scholar
  37. 37.
    R.Gaskell D (2009) Introduction to the Thermodynamics of Materials, 4th edn. Taylor & Francis, New York.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing and Analysis CenterUniversity of Central FloridaOrlandoUSA
  2. 2.Nuclear Fuels and Materials DivisionIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations