Metallurgical and Materials Transactions A

, Volume 44, Issue 2, pp 717–728 | Cite as

Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating

Article

Abstract

Austenite-grain growth was investigated in a couple of microalloyed steels, one containing Ti and the other containing Nb, Ti, and V, using different reheating temperatures between 1273 K and 1523 K (1000 °C and 1250 °C). Nature and distribution of microalloy precipitates were quantitatively analyzed before and after reheating. Interdendritic segregation (or microsegregation) during casting can result in an inhomogeneous distribution of microalloy precipitates in the as-cast slabs, which can create austenite grain size variation (even grain size bimodality) after reheating. Ti addition reduced the grain size variation; however, it could not eliminate the grain size bimodality in Nb-containing steel, due to the differential pinning effect of Nb precipitates. A model was proposed for the prediction of austenite grain size variation in reheated steel by combining different models on microsegregation during solidification, thermodynamic stability, and dissolution of microalloy precipitates and austenite grain growth during reheating.

References

  1. 1.
    T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615, pp. 230–60.Google Scholar
  2. 2.
    G. Tither: Proc. 2nd Int. Conf. on ‘HSLA Steels: Processing, Properties and Applications,’ Baijing, China, 1990, G. Tither, S. Zhang, and J.S.X.H. Zhongguo, eds., TMS, Warrendale, PA, 1992, pp. 61–80.Google Scholar
  3. 3.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Stanley Thornes Ltd., Cheltenham, 2000, pp. 139–242.Google Scholar
  4. 4.
    T. Gladman: Proc. R. Soc., Lond., 1966, vol. 294, pp. 298–309.CrossRefGoogle Scholar
  5. 5.
    L.J. Cuddy and J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.Google Scholar
  6. 6.
    E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.CrossRefGoogle Scholar
  7. 7.
    D. Chakrabarti, C. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.CrossRefGoogle Scholar
  8. 8.
    D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 8939–46.CrossRefGoogle Scholar
  9. 9.
    A. Kundu, C.L. Davis, and M. Strengwood: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 994–1001.CrossRefGoogle Scholar
  10. 10.
    D. Chakrabarti, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 780–95.CrossRefGoogle Scholar
  11. 11.
    S.J. Wu and C.L. Davis: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 456–60.Google Scholar
  12. 12.
    J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38, pp. 2527–35.CrossRefGoogle Scholar
  13. 13.
    C.L. Davis and M. Strangwood: J. Mater. Sci., 2002, vol. 37, pp. 1083–90.CrossRefGoogle Scholar
  14. 14.
    C. Zener: quoted by C.S. Smith, Trans. TMS-AIME, 1948, vol. 175, pp. 15–51.Google Scholar
  15. 15.
    E. Nes, N. Ryum, and O. Hunder: Acta Metall., 1985, vol. 33, pp. 11–22.CrossRefGoogle Scholar
  16. 16.
    J.C. Bruno and P.R. Rios: Scripta Metall., 1995, vol. 32, pp. 601–06.CrossRefGoogle Scholar
  17. 17.
    R. Elst, J.V. Humbeeck, and I. Delaey: Acta Metall., 1988, vol. 36, pp. 1723–29.CrossRefGoogle Scholar
  18. 18.
    D. Chakrabarti: Ph.D. Thesis, University of Birmingham, Birmingham, United Kingdom, 2007, pp. 257–74.Google Scholar
  19. 19.
    S. Suzuki, G.C. Weatherly, and D.C. Houghton: Acta Metall., 1987, vol. 35, pp. 341–52.CrossRefGoogle Scholar
  20. 20.
    K.A. Alogab, D.K. Matlock, J.G. Speer, and H.J. Kleebe: ISIJ Int., 2007, vol. 47, pp. 307–16.CrossRefGoogle Scholar
  21. 21.
    J. Moon, S. Kim, J. Lee, and C. Lee: Metall. Mater. Trans A, 2007, vol. 38A, pp. 2788–95.CrossRefGoogle Scholar
  22. 22.
    D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58 (5), pp. 423–38.CrossRefGoogle Scholar
  23. 23.
    S. Roy, S. Patra, S. Neogi, A. Laik, S.K. Chowdhuri, and D. Chakrabarti: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1845–60.CrossRefGoogle Scholar
  24. 24.
    B. Mintz, W.B. Morrison, and R.C. Cochrane: Proc. Conf. on Advances in the Physical Metallurgy and Applications of Steels, Metals Society, Liverpool, London, 1982, Book 284, pp. 222–28.Google Scholar
  25. 25.
    N. Gao and T.N. Baker: ISIJ Int., 1988, vol. 38, pp. 744–51.CrossRefGoogle Scholar
  26. 26.
    A. Ruiz-Aparicio: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 2004, pp. 76–126.Google Scholar
  27. 27.
    J.M. Cabrera, A. Al Omar, and J.M. Prado: J. Mater. Sci., 1996, vol. 31, pp. 1303–09.CrossRefGoogle Scholar
  28. 28.
    J. Fernandez, S. Illescas, and J.M. Guilemany: Mater. Lett., 2007, vol. 61, pp. 2389–92.CrossRefGoogle Scholar
  29. 29.
    J. Moon, C. Lee, S. Uhm, and S. Lee: Acta Metall., 2006, vol. 54, pp. 1053–61.Google Scholar
  30. 30.
    Y.M. Won and B.G. Thomas: Metall. Mater. Trans A, 2001, vol. 32A, pp. 1755–67.CrossRefGoogle Scholar
  31. 31.
    S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.CrossRefGoogle Scholar
  32. 32.
    T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.Google Scholar
  33. 33.
    J. Kunze, C. Mickel, M. Leonhardt, and S. Oswald: Steel Res., 1997, vol. 68, pp. 403–08.Google Scholar
  34. 34.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, pp. 290–95.Google Scholar
  35. 35.
    R.M. Poths, R.L. Higginson, and E.J. Palmiere: Scripta Mater., 2001, vol. 44, pp. 147–51.CrossRefGoogle Scholar
  36. 36.
    K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.CrossRefGoogle Scholar
  37. 37.
    C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950–53.CrossRefGoogle Scholar
  38. 38.
    T. Gladman and D.J. Senogles: Proc. Conf. on ‘Titanium Technology in Microalloyed Steels’, T.N. Baker, ed., Institute of Materials, London, 1997, pp. 83–90.Google Scholar
  39. 39.
    M. Chapa, S.F. Medina, V. Lopez, and B. Fernandez: ISIJ Int., 2002, vol. 42, pp. 1288–96.CrossRefGoogle Scholar
  40. 40.
    A. Echeverría and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 346, pp. 149–58.CrossRefGoogle Scholar
  41. 41.
    W.B. Li and K.E. Easterling: Acta Metall. Mater., 1990, vol. 38, pp. 1045–52.CrossRefGoogle Scholar
  42. 42.
    S.P. Ringer, W.B. Li, and K.E. Easterling: Acta Metall. Mater., 1989, vol. 37, pp. 1045–52.CrossRefGoogle Scholar
  43. 43.
    B. Garbarz: J. Mater. Process. Technol., 1995, vol. 53, pp. 147–58.CrossRefGoogle Scholar
  44. 44.
    S. Marapoulos, K. Karagiannis, and N. Ridley: J. Mater. Sci., 2007, vol. 42, pp. 1309–20.CrossRefGoogle Scholar
  45. 45.
    L.M. Fu, H.R. Wang, and A.D. Shan: Mater. Sci. Technol., 2011, vol. 27, pp. 996–1001.CrossRefGoogle Scholar
  46. 46.
    Q. Yu and Y. Sun: Mater. Sci. Eng. A, 2006, vol. 420, pp. 34–38.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology (I.I.T.)KharagpurIndia
  2. 2.Materials Science DivisionBhabha Atomic Research Centre (BARC)MumbaiIndia

Personalised recommendations