Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 1, pp 544–551 | Cite as

Fracture Properties of SPS Tungsten Copper Powder Composites

  • Medhat Awad El-Hadek
  • Saleh Hamada Kaytbay
Article

Tungsten-copper composites with various copper nano-particles volume fractions were manufactured and examined. Tungsten-copper composites with 20 pct, 25 pct, and 30 pct volume fractions were mechanically mixed and sintered. spark plasma sintering (SPS) method was used for samples preparation at two different sintered temperatures 1273 K and 1373 K (1000 °C and 1100 °C). The effect of copper nano-particles on the bulk density, hardness, the coefficient of thermal expansion (CTE), electrical conductivity, and stress-strain behavior of the produced composites were studied. The hardness was found to decrease with the increase of the copper volume fraction in the composites. Conversely, the CTE and electrical conductivity increases with the increase of the copper volume fraction in the composites. Furthermore, the elastic modulus were extracted from tensile stress-strain behavior were found to increase with the increase of the copper volume fraction in the composites. Finally, the fracture surface roughness was studied using high resolution optical investigations and was noticeably higher with the increase of the copper volume fraction in the composites.

Keywords

Sinter Temperature Spark Plasma Sinter Tungsten Particle High Resolution Scanning Electron Microscopy Spark Plasma Sinter Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.L. Johnson and R.M. German: J. Adv. Powder Metall., 1991, vol. 6, pp. 391–405.Google Scholar
  2. 2.
    Y.D. Kim, N.L. Oh, S.T. Oh, and I.H. Moon: Mater. Lett., 2001, vol. 51(5), pp. 420–24. Doi: 10.1016/S0167-577X(01)00330-5.CrossRefGoogle Scholar
  3. 3.
    E. Uhlmann, S. Piltz, and K. Schauer: J. Mater. Process. Technol., 2005, vol. 167, pp. 402–07. doi: 10.1016/j.jmatprotec.2005.05.022.CrossRefGoogle Scholar
  4. 4.
    E.S. Yoon, J.S. Lee, S.T. Oh, and B.K. Kim: Int. J. Refract Metal Hard Mater., 2002, vol. 20(3), pp. 201–06. doi: 10.1016/S0263-4368(02)00003-3.CrossRefGoogle Scholar
  5. 5.
    S.H. Hong and B.K. Kim: Mater. Lett., 2003, vol. 57(18), pp. 2761–67. doi: 10.1016/S0167-577X(03)00071-5.CrossRefGoogle Scholar
  6. 6.
    F. Doré, S. Lay, N. Eustathopoulos, and C.H. Allibert: Scripta Mater., 2003, vol. 49(3), pp. 237–42. doi: 10.1016/S1359-6462(03)00244-6.CrossRefGoogle Scholar
  7. 7.
    S. Bera, Z. Zúberová, R.J. Hellmig, Y. Estrin, and I. Manna: Philos. Mag., 2010, vol. 90(11), pp. 1465–83. doi: 10.1080/14786430903365286.CrossRefGoogle Scholar
  8. 8.
    S. Bera, W. Lojkowsky, and I. Manna: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3276–83. doi: 10.1007/s11661-009-0019-7.CrossRefGoogle Scholar
  9. 9.
    M.A. El-Hadek and S. Kaytbay: Strain, 2009, vol. 45(6), pp. 506–15. doi: 10.1111/j.1475-1305.2008.00552.x.CrossRefGoogle Scholar
  10. 10.
    J. Cheng, P. Song, Y. Gong, Y. Cai, and Y. Xia: Mater. Sci. Eng., 2008, vol. 488, pp. 453–57. doi: 10.1016/j.msea.2007.11.022.CrossRefGoogle Scholar
  11. 11.
    A. K. Basu and F.R. Sale: J. Mater. Sci., 1978, vol. 13, pp. 2703–11.CrossRefGoogle Scholar
  12. 12.
    M.B. Naseri, A.R. Kamali, and S.M. Hadavi: Russ. J. Inorg. Chem., 2010, vol. 55(2), pp. 167–73. doi: 10.1134/S0036023610020051.CrossRefGoogle Scholar
  13. 13.
    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–77. doi: 10.1007/s10853-006-6555-2.CrossRefGoogle Scholar
  14. 14.
    G.G. Lee, G.H. Ha, and B.K. Kim: Powder Metall., 2000, vol. 43(1), pp. 79–82.CrossRefGoogle Scholar
  15. 15.
    M. Omori: Mater. Sci. Eng. A, 2000, vol. 287(2), pp. 183–88. doi: 10.1016/S0921-5093(00)00773-5.CrossRefGoogle Scholar
  16. 16.
    J.R. Groza: Powder Metall. Met. Handb., 1998, vol. 7, pp. 583–89.Google Scholar
  17. 17.
    J.R. Groza, M. Garcia, and J.A. Schneider: J. Mater. Res., 2001, vol. 16, pp. 286–92. doi: 10.1557/JMR.2001.0043.CrossRefGoogle Scholar
  18. 18.
    M. Tokita: Mater. Sci. Forum, 1999, vols. 308–311, pp. 83–88. doi:10.4028/www.scientific.net/MSF.308-311.83.
  19. 19.
    U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Mater. Sci. Eng. A, 2005, vol. 407, pp. 24–30. doi: 10.1016/j.msea.2005.06.066.CrossRefGoogle Scholar
  20. 20.
    T.B. Holland, J.F. Loffler, and Z.A. Munira: J. Appl. Phys., 2004, vol. 95(5), pp. 2896–99. doi: 10.1063/1.1642280.CrossRefGoogle Scholar
  21. 21.
    P. Asoka-Kumar, K. O’Brien, K.G. Lynn, P.J. Simpson, and K.P. Rodbell: Appl. Phys. Lett., 1996, vol. 68, pp. 406–08. doi: 10.1063/1.116700.CrossRefGoogle Scholar
  22. 22.
    M.H. Maneshian and A. Simchi: J. Compos. Compd., 2008, vol. 463, pp. 153–59. doi: 10.1016/j.jallcom.2007.08.080.Google Scholar
  23. 23.
    Keithely: Low-Level Measurements Handbook. Anablog-Blog on EDN, New York Publications, 1991.Google Scholar
  24. 24.
    IACS: Electrical properties. International Annealed Copper Standard by the International Electro Technical Commission (IACS) in terms of the following properties at 20 °C, 1913.Google Scholar
  25. 25.
    G. Weng: Int. J. Eng. Sci., 1984, vol. 229(7), pp. 845–856. doi: 10.1016/0020-7225(84)90033-8.CrossRefGoogle Scholar
  26. 26.
    S.-Y. Chang, C.-F. Chen, S.-J. Lin, and T.Z. Kattamis: Acta Mater., 2003, vol. 51(20), pp. 6291–302. doi: 10.1016/S1359-6454(03)00462-2.CrossRefGoogle Scholar
  27. 27.
    D. Janković Ilić, J. Fiscina, C.J.R. González-Oliver, N. Ilić, and F. Mücklich: J. Mater. Sci., 2008, vol. 43(20), pp. 6777–83. doi: 10.1007/s10853-008-2941-2.CrossRefGoogle Scholar
  28. 28.
    S. Raymond: Physics for Scientists and Engineers with Modern Physics, 3rd ed., Saunders College Publishing, Forth Worth.Google Scholar
  29. 29.
    A. Abousree Hegazy, M. Abdallah, A. Ibrahim, and S.F. Mostafa: Res. Bull. Aust. Inst. High Energ. Mater. This manuscript has been reviewed and accepted for publication in the 2010, ISBN: 978-0-9806811-8-5, http://bulletins.ausihem.org/.
  30. 30.
    X. Shi, S. Wang, X. Yang, Q. Zhang, and Y. Wang: J. Wuhan Univ. Technol. (Mater. Sci. Ed.), 2010, vol. 25(6), pp. 909–13. doi: 10.1007/s11595-010-0118-8.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Mechanical Design & Production, Faculty of Engineering at Port-SaidPort-Said UniversityPort-Fouad, Port-SaidEgypt
  2. 2.Department of Mechanical Engineering, Faculty of Engineering at BenhaBenha UniversityBenhaEgypt

Personalised recommendations