Metallurgical and Materials Transactions A

, Volume 43, Issue 13, pp 5298–5307 | Cite as

Determination of the Minimum Scan Size to Obtain Representative Textures by Electron Backscatter Diffraction

  • Abhijit Brahme
  • Yauheni Staraselski
  • Kaan InalEmail author
  • Raja K. Mishra


A new method for analyzing microstructure is proposed to evaluate the long-range dependence of texture. The proposed method calculates the average disorientation as a function of distance between data points as measured by electron backscatter diffraction patterns. This method gives a measure of clustering of texture and is used to evaluate accurately the effective grain size. This procedure in conjunction with Information theory is used to estimate a representative scan size for various materials. Analyses show that the optimal scan size depends on grain morphology and crystallographic texture. The results also indicate that on an average the optimal scan size needs to be 10 times the effective grain size.


Fisher Information Crystallographic Texture EBSD Data Confidence Index Intermediate Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and General Motors of Canada. The authors also gratefully acknowledge the High Performance Computing Center at the University of Sherbrooke (RQCHP).

Supplementary material

Supplementary material 1 (MPEG 488 kb)


  1. 1.
    J.A. Venables and C.J. Harland: Philos. Mag., 1973, vol. 27, no. 5, pp. 1193–1200.CrossRefGoogle Scholar
  2. 2.
    B. Adams, S. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31Google Scholar
  3. 3.
    K. Kunze, S.I. Wright, B.L. Adams, and D.J. Dingley: Texture Microstruct., 1993, vol. 20, nos. 1–4, pp. 41–54.CrossRefGoogle Scholar
  4. 4.
    D.R. Steinmetz and S. Zaefferer: Mater. Sci. Technol., 2010, vol. 26, no. 6, pp. 640–45.Google Scholar
  5. 5.
    A. Brahme, J. Fridy, H. Weiland, and A.D. Rollett: Model. Simul. Mater. Sci. Eng., 2009, vol. 17 (1), p. 015005.Google Scholar
  6. 6.
    O.M. Ivasishin, S.V. Shevchenko, N.L. Vasiliev, and S.L. Semiatin: Mater. Sci. Eng. A, 2006, vol. 433, nos. 1–2, pp. 216–32.Google Scholar
  7. 7.
    D. Raabe and L. Hantcherli: Comput. Mater. Sci., 2005, vol. 34, no. 4, pp. 299–313.CrossRefGoogle Scholar
  8. 8.
    A. Bhattacharyya, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Int. J. Plast., 2001, vol. 17, no. 6, pp. 861–83.CrossRefGoogle Scholar
  9. 9.
    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer: Acta Mater., 2001, vol. 49, no. 17, pp. 3433–41.CrossRefGoogle Scholar
  10. 10.
    A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan, G. Cailletaud: Acta Mater., 2007, vol. 55, no. 12, pp. 4121–36.CrossRefGoogle Scholar
  11. 11.
    K. Inal, M.H. Simha, and R.K. Mishra: J. Eng. Mater. Technol., 2008, vol. 130, pp. 021003-1–021003-8.Google Scholar
  12. 12.
    R. Lebensohn, R. Brenner, O. Castelnau, and A. Rollett: Acta Mater., 2008, vol. 56, no. 15, pp. 3914–26.CrossRefGoogle Scholar
  13. 13.
    V.V. Fedorov: Theory of Optimal Experiments, Academic Press, New York, 1972.Google Scholar
  14. 14.
    C.A. Schuh, M. Kumar, and W.E. King: Acta Mater., 2003, vol. 51, no. 3, pp. 687–700.CrossRefGoogle Scholar
  15. 15.
    F.J. Humphreys: J. Microsc., 1999, vol. 195, no. 3, pp. 170–85.CrossRefGoogle Scholar
  16. 16.
    S.I. Wright, M.M. Nowell, and J.F. Bingert: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1845–55.CrossRefGoogle Scholar
  17. 17.
    T. Baudin and R. Penelle: Metall. Trans. A, 1993, vol. 24, pp. 2299–2311.CrossRefGoogle Scholar
  18. 18.
    K. Davut and S. Zaefferer: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2187–96.CrossRefGoogle Scholar
  19. 19.
    H.J. Bunge: Texture Analysis in Materials Science, Butterworths, London, 1982.Google Scholar
  20. 20.
    B. Beausir, C. Fressengeas, N.P. Gurao, L.S. Toth, and S. Suwas: Acta Mater., 2009, vol. 57, no. 18, pp. 5382–95.CrossRefGoogle Scholar
  21. 21.
    B. Adams, P. Morris, T. Wang, K. Willden, and S. Wright: Acta Metall., 1987, vol. 35, no. 12, pp. 2935–46.CrossRefGoogle Scholar
  22. 22.
    N.R. Barton and P.R. Dawson: Model. Simul. Mater. Sci. Eng., 2001, vol. 9, no. 5, p. 433.CrossRefGoogle Scholar
  23. 23.
    A. Vorhauer, T. Hebesberger, and R. Pippan: Acta Mater., 2003, vol. 51, no. 3, pp. 677–86.CrossRefGoogle Scholar
  24. 24.
    R.M. Gray: Entropy and Information Theory, Springer, New York, 2009.Google Scholar
  25. 25.
    S. Kullback and R.A. Leibler: Ann. Math. Stat., 1951, vol. 22, no. 1, pp. 79–86.CrossRefGoogle Scholar
  26. 26.
    J.H. Chang and W.S. Lee: J. Inf. Sci., 2005, vol. 31, pp. 420–32.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Abhijit Brahme
    • 1
  • Yauheni Staraselski
    • 1
  • Kaan Inal
    • 1
    Email author
  • Raja K. Mishra
    • 2
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.General Motors Research and Development CenterWarrenUSA

Personalised recommendations