Advertisement

Metallurgical and Materials Transactions A

, Volume 43, Issue 13, pp 5106–5114 | Cite as

Submerged Friction-Stir Welding (SFSW) Underwater and Under Liquid Nitrogen: An Improved Method to Join Al Alloys to Mg Alloys

  • Mohammad Ammar Mofid
  • Amir Abdollah-ZadehEmail author
  • Farshid Malek Ghaini
  • Cemil Hakan Gür
Article

Abstract

Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen is demonstrated as an alternative and improved method for creating fine-grained welds in dissimilar metals. Plates of AZ31 (Mg alloy) and AA5083 H34 were joined by friction-stir welding in three different environments, i.e., in air, water, and liquid nitrogen at 400 rpm and 50 mm/min. The temperature profile, microstructure, scanning electron microscopy (SEM)-energy-dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD), hardness, and tensile testing results were evaluated. In the stir zone of an air-welded specimen, formation of brittle intermetallic compounds of Al3Mg2, Al12Mg17, and Al2Mg3 contributed to cracking in the weld nugget. These phases were formed because of constitutional liquation. Friction-stir welding underwater and under liquid nitrogen significantly suppresses the formation of intermetallic compounds because of the lower peak temperature. Furthermore, the temperature profiles plotted during this investigation indicate that the largest amount of ∆T is generated by the weld under liquid nitrogen, which is performed at the lowest temperature. It is shown that in low-temperature FSW, the flow stress is higher, plastic contribution increases, and so adiabatic heating, a result of high strain and high strain-rate deformation, drives the recrystallization process beside frictional heat.

Keywords

Welding Intermetallic Compound Heat Input Weld Joint Al3Mg2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors greatly acknowledge the Middle East Technical University (METU) for access to their SEM laboratory. The authors would also like to thank Mr. F. Kargar, Mr. T. Ertürk, and Mr. A. Kantarcioglu for their assistance with the experiments during the study.

References

  1. 1.
    J.A. Esparza, E.A. Trillo, and L.E. Murr: J. Mater. Sci. Lett., 2002, vol. 21, pp. 917–20.CrossRefGoogle Scholar
  2. 2.
    W.V. Vaidya, M. Horstmann, E. Seib, K. Toksoy, and M. Kocak: Adv. Eng. Mater., 2006, vol. 8, pp. 399–406.CrossRefGoogle Scholar
  3. 3.
    C. Liu, D.L. Chen, S. Bhole, X. Cao, and M. Jahazi: Mater. Charact., 2009, vol. 60, pp. 370–76.CrossRefGoogle Scholar
  4. 4.
    D. Dietrich, D. Nickel, and M. Krause: J. Mater. Sci., 2011, vol. 46, pp. 357–64.CrossRefGoogle Scholar
  5. 5.
    Y.C. Chen and K. Nakata: Scripta Mater., 2007, vol. 58, pp. 433–36.Google Scholar
  6. 6.
    Y.S. Sato and C. Park: Scripta Mater., 2004, vol. 50, pp. 1233–36.CrossRefGoogle Scholar
  7. 7.
    A.A. McLean, G.L.F. Powell, I.H. Brown, and V.M. Linton: Sci. Tech. Weld. J., 2003, vol. 8, pp. 462–64.CrossRefGoogle Scholar
  8. 8.
    A.C. Somasekharan and L.E. Murr: Mater. Charact., 2004, vol. 52, pp. 49–64.CrossRefGoogle Scholar
  9. 9.
    A.C. Somasekharan and L.E. Murr: Microstructural Details of Friction-Stir Weld Interfaces, Friction Stir Welding and Processing, 3rd ed., K.V. Jata, eds., TMS, Warrendale, PA, 2005, pp. 261–68.Google Scholar
  10. 10.
    S. Hirano, K. Okamoto, M. Doi, H. Okamura, M. Inagaki, and Y. Aono: Q. J. Jpn. Weld. Soc., 2003, vol. 21, pp. 539–45.CrossRefGoogle Scholar
  11. 11.
    R. Zettler: Adv. Eng. Mater., 2006, vol. 8, pp. 415–21.CrossRefGoogle Scholar
  12. 12.
    L.E. Murr: Mater. Res. Inn., 1998, vol. 2, pp. 150–63.CrossRefGoogle Scholar
  13. 13.
    Y.S. Sato: Mater. Sci. Eng. A, 2004, vol. A369, pp. 138–43.Google Scholar
  14. 14.
    X. Cao and M. Jahazi: Adv. Manuf. Technol., 2009, vol. 56, pp. 370–76.Google Scholar
  15. 15.
    V. Firouzdor and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2914–35.CrossRefGoogle Scholar
  16. 16.
    Y.J. Kwon, I. Shigematsu, and N. Saito: Mater. Lett., 2008, vol. 62, pp. 3827–29.CrossRefGoogle Scholar
  17. 17.
    A.K. Kostka, R.S. Coelho, J. dos Santos, and A.R. Pyzalla: Scripta Mater., 2009, vol. 60, pp. 953–56.CrossRefGoogle Scholar
  18. 18.
    J. Yan, Z. Xu, Z. Li, L. Li, and S. Yang: Scripta Mater., 2005, vol. 53, pp. 585–89.CrossRefGoogle Scholar
  19. 19.
    F.U. Rui-dong, S. Zeng-qiang, S. Rui-cheng, L. Ying, L. Hui-jie, and L. Lei: Mater Des., 2011, vol. 32, pp. 4825–31.CrossRefGoogle Scholar
  20. 20.
    D. Sakurada, K. Katoh, and H. Tokisue: J. Jpn. Inst. Light Met., 2002, vol. 52, pp. 22–29.CrossRefGoogle Scholar
  21. 21.
    T. Bloodworth: Master’s Thesis, Vanderbilt University, Nashville, TN, 2009.Google Scholar
  22. 22.
    D.C. Hofmann and S. Kennesh: Mater. Sci. Eng. A, 2005, vol. 402, pp. 234–41.CrossRefGoogle Scholar
  23. 23.
    ASTM A1038-10, “Standard Practice for Portable Hardness Testing by the Ultrasonic Contact Impedance Method,” 2010.Google Scholar
  24. 24.
    R.E. Reed-Hill: Physical Metallurgy Principles, PWS-Kent, Boston, MA, 1973.Google Scholar
  25. 25.
    P. Greenfield and M.B. Bever: Acta Metall., 1957, vol. 5, pp. 125–30.CrossRefGoogle Scholar
  26. 26.
    P. Heurtier, M.J. Jones, and C. Desrayaud: Mater. Process. Tech., 2006, vol. 171, pp. 348–57.CrossRefGoogle Scholar
  27. 27.
    ASM International: ASM Handbook, vol. 3: Alloy Phase Diagrams, ASM International, Materials Park, OH, 1998.Google Scholar
  28. 28.
    X. Cao and M. Jahazi: Mater. Des., 2011, vol. 32, pp. 1–11.CrossRefGoogle Scholar
  29. 29.
    G.M. Cantin, S.A. David, L. Curzio, and S.S. Babu: Proc. 7 th Int. Conf. on Trends in Welding Research, Callaway Gardens Resort, Pine Mountains, GA, 2005, pp. 185–190.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Mohammad Ammar Mofid
    • 1
  • Amir Abdollah-Zadeh
    • 1
    Email author
  • Farshid Malek Ghaini
    • 1
  • Cemil Hakan Gür
    • 2
  1. 1.Department of Materials EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Metallurgical & Materials EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations