Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

Article

Abstract

Li-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85 V demonstrated stable cycling up to 200 cycles followed by a rapid fade. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130 mAh/g at C/2. The improved stability, along with its cost-effectiveness, environmental benignity, and safety, make the LiFePO4/Li4Ti5O12 combination Li-ion battery a promising option for storing renewable energy.

Notes

Acknowledgments

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the United States Department of Energy, under Contract No. DE-AC02-05CH11231, Subcontract No. 24134 under the Batteries for Advanced Transportation Technologies (BATT) Program. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under Contract No. DE-AC05-76RL01830.

References

  1. 1.
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu: Chem. Rev., 2011, vol. 111, no. 5, pp. 3577–3613.CrossRefGoogle Scholar
  2. 2.
    T. Xu, W. Wang, M. Gordin, D. Wang, and D. Choi: JOM-US, 2010, vol. 62, no. 9, pp. 24–31.CrossRefGoogle Scholar
  3. 3.
    D. Choi, D. Wang, V.V. Viswanathan, I. Bae, W. Wang, Z. Nie, J. Zhang, G.L. Graff, J. Liu, Z. Yang, and T. Duong: Electrochem. Commun., 2010, vol. 12, pp. 378–81.CrossRefGoogle Scholar
  4. 4.
    Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, and J. Liu: J. Power Sources, 2009, vol. 192, pp. 588–98.CrossRefGoogle Scholar
  5. 5.
    V.V. Viswanathan, D. Choi, D. Wang, W. Xu, S. Towne, R.E. Williford, J. Zhang, J. Liu, and Z. Yang: J. Power Sources, 2010, vol. 195, pp. 3720–29.CrossRefGoogle Scholar
  6. 6.
    A. Jaiswal, C.R. Horne, O. Chang, W. Zhang, W. Kong, E. Wang, T. Chern, and M.M. Doeff: J. Electrochem. Soc., 2009, vol. 156, p. A1041.CrossRefGoogle Scholar
  7. 7.
    A.K. Padhi: J. Electrochem. Soc., 1997, vol. 144, p. 1188.CrossRefGoogle Scholar
  8. 8.
    M. Dubarry and B.Y. Liaw: J. Power Sources, 2009, vol. 194, pp. 541–49.CrossRefGoogle Scholar
  9. 9.
    X. Li, F. Kang, X. Bai, and W. Shen: Electrochem. Commun., 2007, vol. 9, pp. 663–66.CrossRefGoogle Scholar
  10. 10.
    Q. Huang, M. Yan, and Z. Jiang: J. Power Sources, 2006, vol. 156, pp. 541–46.CrossRefGoogle Scholar
  11. 11.
    D. Wang, X. Wu, Z. Wang, and L. Chen: J. Power Sources, 2005, vol. 140, pp. 125–28.CrossRefGoogle Scholar
  12. 12.
    X. Zhi, G. Liang, L. Wang, X. Ou, J. Zhang, and J. Cui: J. Power Sources, 2009, vol. 189, pp. 779–82.CrossRefGoogle Scholar
  13. 13.
    J. Christensen: J. Electrochem. Soc., 2010, vol. 157, p. A366.CrossRefGoogle Scholar
  14. 14.
    W. Zhang: J. Electrochem. Soc., 2010, vol. 157, p. A1040.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International (outside the USA) 2012

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.UniEnergy Technologies, LLCMukilteoUSA

Personalised recommendations