Metallurgical and Materials Transactions A

, Volume 43, Issue 12, pp 4655–4666 | Cite as

Multiscale Study of Interfacial Intermetallic Compounds in a Dissimilar Al 6082-T6/Cu Friction-Stir Weld

  • M. N. Avettand-Fenoël
  • R. Taillard
  • G. Ji
  • D. Goran


The objective of this work was to characterize the Al x Cu y intermetallic compounds (IMCs) formed at the abutting interface during solid-state friction-stir welding (FSW) of 6082 aluminum alloy and pure copper. As IMCs are potential sources of flaws in case of mechanical loading of welds, their study is essential at various scale lengths. In the present case, they have been identified by neutron diffraction, electron backscattered diffraction, and transmission electron microscopy. Neutron diffraction analyses have shown that a shift of the tool from the interface, in particular towards the Cu part, generates an increase of the IMCs’ volume fraction. In accordance with an exacerbation of its kinetics of formation by FSW, a 4-μm-thick layer has precipitated at the interface despite the shortness of the thermal cycle. This layer is composed of two sublayers with the Al4Cu9 and Al2Cu stoichiometry, respectively. Convergent beam electron diffraction analyses have, however, disclosed that the crystallography of the current Al2Cu compound does not comply with the usual tetragonal symmetry of this phase. The Al2Cu phase formation results from both the local chemical composition and thermodynamics, whereas the development of Al4Cu9 is rather due to both the local chemical composition and the shortness of the local FSW thermal cycle.


Welding Intermetallic Compound IMCs Layer FSSW Convergent Beam Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks are due to the IS French Welding Institute for providing the samples, to G. André (LLB, Saclay) for neutron diffraction experiments, and to Dr. D. Troadec (IEMN, Villeneuve d’Ascq) for preparing FIB specimens. The TEM facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais and the European Regional Development Fund (ERDF).


  1. 1.
    P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers: Int. Mater. Rev., 2009, vol. 54, pp. 49–93.CrossRefGoogle Scholar
  2. 2.
    M. Ericsson and R. Sandström: Int. J. Fatigue, 2003, vol. 25, pp. 1379–87.CrossRefGoogle Scholar
  3. 3.
    R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.CrossRefGoogle Scholar
  4. 4.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia: Progr. Mater. Sci., 2008, vol. 53, pp. 980–1023.CrossRefGoogle Scholar
  5. 5.
    P. Xue, B.L. Xiao, D.R. Ni, and Z.Y. Ma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5723–27.CrossRefGoogle Scholar
  6. 6.
    T. Laurida, V. Vuorinen, and J.K. Kivilahti: Mater. Sci. Eng. R, 2005, vol. 49, pp. 1–60.CrossRefGoogle Scholar
  7. 7.
    M. Braunovic and M. Alexandrov: IEEE Trans. Compon. Packag. Manufact. Technol., Part A, 1997, vol. 17, pp. 78–85.CrossRefGoogle Scholar
  8. 8.
    H.J. Park, S. Rhee, M.J. Kang, and D.C. Kim: Mater. T. JIM, 2009, vol. 50, pp. 2314–17.CrossRefGoogle Scholar
  9. 9.
    M. Abbasi, A.K. Taheri, and M.T. Salehi: J. Alloy. Compd., 2001, vol. 319, pp. 233–41.CrossRefGoogle Scholar
  10. 10.
    Y.J. Su, X-H. Liu, H-Y. Huang, X-F. Liu, and H-X. Xie: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4088–99.CrossRefGoogle Scholar
  11. 11.
    C-Y. Chen, H-L. Chen, and W-S. Hwang: Mater. Trans. JIM, 2006, vol. 47, pp. 1232–39.CrossRefGoogle Scholar
  12. 12.
    M. Aonuma and K. Nakata: Mater. Sci. Eng. B, 2010, vol. 173, pp. 135–38.CrossRefGoogle Scholar
  13. 13.
    A. Hirose, H. Imaeda, M. Kondo, and K.F. Kobayashi: Mater. Sci. Forum, 2007, vols. 539–543, pp. 3888–93.CrossRefGoogle Scholar
  14. 14.
    T. Tanaka, T. Morishige, and T. Hirata: Scripta Mater., 2009, vol. 61, pp. 756–59.CrossRefGoogle Scholar
  15. 15.
    M. Aonuma and K. Nakata: Mater. Sci. Eng. B, 2010, vol. 173, pp. 135–38.CrossRefGoogle Scholar
  16. 16.
    K. Savolainen, J. Mononen, T. Saukkonen, and H. Hänninen: Proc. Int. Symp. FSW, 2006, Paper 79.Google Scholar
  17. 17.
    K. Ueda, T. Ogura, S. Nishiuchi, K. Miyamoto, T. Nanbu, and A. Hirose: Mater. T. JIM, 2011, vol. 52, pp. 967–73.CrossRefGoogle Scholar
  18. 18.
    D.-H. Choi, B.-W. Ahn, C.-Y. Lee, Y.-M. Yeon, K. Song, and S.-B. Jung: Intermetallics, 2011, vol. 19, pp. 125–30.CrossRefGoogle Scholar
  19. 19.
    T. Ogura, K. Ueda, Y. Saito, and A. Hirose: Mater. Trans. JIM, 2011, vol. 52, pp. 979–84.CrossRefGoogle Scholar
  20. 20.
    J. Wilden, J.P. Bergmann, and S. Jahn: Adv. Eng. Mater., 2006, vol. 8, pp. 212–18.CrossRefGoogle Scholar
  21. 21.
    Smithells Metal Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Oxford, U.K., 1992.Google Scholar
  22. 22.
    W. Zhou, L. Liu, B. Li, Q. Song, and P. Wu: J. Electron. Mater., 2009, vol. 38, no. 2, pp. 356–64.CrossRefGoogle Scholar
  23. 23.
    A.I. Zaitsev, N.E. Zaitseva, R.Y. Shinko, N.A. Arutyunyan, S.F. Dunaev, V.S. Kraposhin, and H.T. Lam: J. Phys. Cond. Matter., 2008, vol. 20, p. 114121.CrossRefGoogle Scholar
  24. 24.
    M. Kowalski and P.J. Spencer: J. Phase Equil., 1993, vol. 14, no. 4, pp. 432–38.CrossRefGoogle Scholar
  25. 25.
    M. Watanabe, K. Feng, Y. Nakamura, and S. Kumai: Mater. Trans. JIM, 2011, vol. 52, pp. 953–59.CrossRefGoogle Scholar
  26. 26.
    S. Takeshi, O. Masafumi, E. Seiichi, and M. Kazuya: Q. J. Jpn. Weld. Soc., 2000, vol. 18, pp. 365–72.CrossRefGoogle Scholar
  27. 27.
    A. Arora, Z. Zhang, A. De, and T. DebRoy: Scripta Mater., 2009, vol. 61, pp. 863–66.CrossRefGoogle Scholar
  28. 28.
    P. Heurtier, C. Desrayaud, and F. Montheillet: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1537–42.CrossRefGoogle Scholar
  29. 29.
    H. Schmidt and J. Hattel: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 77–93.CrossRefGoogle Scholar
  30. 30.
    G. Buffa, J. Hua, R. Shivpuri, and L. Fratini: Mater. Sci. Eng.A., 2006, vol. 419, pp. 381–88.CrossRefGoogle Scholar
  31. 31.
    G. Buffa, J. Hua, R. Shivpuri, and L. Fratini: Mater. Sci. Eng. A., 2006, vol. 419, pp. 389–96.CrossRefGoogle Scholar
  32. 32.
    K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa: Scripta Mater., 2008, vol. 58, pp. 355–60.CrossRefGoogle Scholar
  33. 33.
    M. Militzer, W.P. Sun, and J.J. Jonas: Acta Metall. Mater., 1994, vol. 42, pp. 133–41.CrossRefGoogle Scholar
  34. 34.
    I.E. Gunduz, T. Ando, E. Shattuck, P.Y. Wong, and C.C. Doumanitis: Scripta Mater., 2005, vol. 52, pp. 939–43.CrossRefGoogle Scholar
  35. 35.
    K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743–49.CrossRefGoogle Scholar
  36. 36.
    Ø. Frigaard, Ø. Grong, and O.T. Midling: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1189–1200.CrossRefGoogle Scholar
  37. 37.
    A. Gerlich, G. Avramovic-Cingara, and T.H. North: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2773–86.CrossRefGoogle Scholar
  38. 38.
    C.I. Chang, C.J. Lee, and J.C. Huang: Scripta Mater., 2004, vol. 51, pp. 509–14.CrossRefGoogle Scholar
  39. 39.
    A. Askari, S. Silling, B. London, and M. Mahoney: Friction Stir Welding and Processing, TMS, Warrendale, PA, 2001, pp. 43–54.Google Scholar
  40. 40.
    R. Qiu, S. Satonaka, and C. Iwamoto: Mater. Des., 2009, vol. 30, pp. 3686–89.CrossRefGoogle Scholar
  41. 41.
    R. Ayer, H.W. Jin, R.R. Mueller, S. Ling, and S. Ford: Scripta Mater., 2005, vol. 53, pp. 1383–87.CrossRefGoogle Scholar
  42. 42.
    W.B. Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, and S.B. Jung: Scripta Mater., 2006, vol. 55, pp. 355–58.CrossRefGoogle Scholar
  43. 43.
    K.S. Bang, K.J. Lee, H.S. Bang, and H.S. Bang: Mater. Trans., 2011, vol. 52, no. 5, pp. 974–78.CrossRefGoogle Scholar
  44. 44.
    A. Kostka, R.S. Coelho, J. dos Santos, and A.R. Pyzalla: Scripta Mater., 2009, vol. 60, pp. 953–56.CrossRefGoogle Scholar
  45. 45.
    P. Xue, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4683–89.CrossRefGoogle Scholar
  46. 46.
    FullProf: WinPLOTR Software, A Graphic Tool For Powder Diffraction, Version 2006.Google Scholar
  47. 47.
    M.N. Avettand-Fènoël, R. Taillard, C. Herbelot, and A. Imad: Mater. Sci. Forum, 2010, vols. 638–642, pp. 1209–14.CrossRefGoogle Scholar
  48. 48.
    M.-N. Avettand-Fènoël, R. Taillard, and G. Ji: Mater. Sci. Forum, 2012, vols. 706–709, pp. 959–64.CrossRefGoogle Scholar
  49. 49.
    T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349–54.CrossRefGoogle Scholar
  50. 50.
    S.R. Ren, Z.Y. Ma, and L.Q. Chen: Scripta. Mater., 2007, vol. 56, pp. 69–72.CrossRefGoogle Scholar
  51. 51.
    H.J. Liu, J.J. Shen, L. Zhou, Y.Q. Zha, C. Liu, and L.Y. Kuang: Sci. Technol. Weld. Joi., 2011, vol. 16, no. 1, pp. 92–98.CrossRefGoogle Scholar
  52. 52.
    W. Jost: Diffusion in Solids, Liquids, Gases, E.M. Loebl, ed., Academic Press, New York, NY, 1960.Google Scholar
  53. 53.
    D. Liu, L. Zhang, Y. Du, H. Xu, S. Liu, and L. Liu: CALPHAD, 2009, vol. 33, pp. 761–68.CrossRefGoogle Scholar
  54. 54.
    H.T.G. Hentzell and K.N. Tu: J. Appl. Phys., 1983, vol. 54, pp. 6929–37.CrossRefGoogle Scholar
  55. 55.
    R. Taillard, C.E. Bruzek, and E. Florianova: Proc. Int. Conf. Solid to Solid Phase Transformations, Nemacolin Woodlands, PA, TMS, Warrendale, PA, 1994, pp. 1183–88.Google Scholar
  56. 56.
    D.Y. Ying and D.L. Zhang: J. Alloy. Compd., 2000, vol. 311, pp. 275–82.CrossRefGoogle Scholar
  57. 57.
    F. Hodaj and P.J. Desré: Acta Mater., 1996, vol. 11, pp. 4485–90.CrossRefGoogle Scholar
  58. 58.
    T. Watanabe, H. Takayama, and A. Yanagisawa: J. Mater. Process. Technol., 2006, vol. 178, pp. 342–49.CrossRefGoogle Scholar
  59. 59.
    D. Goran, G. Ji, M.N. Avettand-Fènoël, and R. Taillard: Mater. Sci. Forum, 2012, vols. 702-703, pp. 574–77.CrossRefGoogle Scholar
  60. 60.
    M. Kajihara: Acta Mater., 2004, vol. 52, pp. 1193–1200.CrossRefGoogle Scholar
  61. 61.
    N. Ponweiser, C.L. Lengauer, and K.W. Richter: Intermetallics, 2011, vol. 19, pp. 1737–46.CrossRefGoogle Scholar
  62. 62.
    R. Taillard, M.N. Avettand-Fènoël, C. Herbelot, and A. Imad: Proc. Journées Annuelles de la Société Française de Métallurgie et de Matériaux, Nancy, France, 2011.Google Scholar
  63. 63.
    A. Simar, Y. Bréchet, B. de Meester, A. Denquin, C. Gallais, and T. Pardoen: Progr. Mater. Sci., 2012, vol. 57, no. 1, pp. 95–183.CrossRefGoogle Scholar
  64. 64.
    L.E. Svensson, L. Karlsson, H. Larsson, B. Karlsson, M. Fazzini, and. J. Karlsson: Sci. Tech. Weld. Joi., 2000, vol. 5, pp. 285–96.CrossRefGoogle Scholar
  65. 65.
    Y.S. Sato, M. Urata, and H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625–35.CrossRefGoogle Scholar
  66. 66.
    G. Mrówka-Nowotnik and J. Sieniawski: J. Mater. Process. Technol., 2005, vols. 162–163, pp. 367–72.CrossRefGoogle Scholar
  67. 67.
    T. Watanabe, A. Yoneda, A. Yanagisawa, S. Konuma, and O. Ohashi: Yosetsu Gakkai Ronbunsu, 1999, vol. 17, pp. 223–33.Google Scholar
  68. 68.
    M. Girard, B. Huneau, C. Genevois, X. Sauvage, and G. Racineux: Sci. Tech. Weld. Joi., 2010, vol. 15, pp. 661–65.CrossRefGoogle Scholar
  69. 69.
    P. Ramachandrarao and M. Laridjani: J. Mater. Sci., 1974, vol. 9, pp. 434–37.CrossRefGoogle Scholar
  70. 70.
    R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Eng. R, 1993, vol. 10, pp. 1–83.Google Scholar
  71. 71.
    D. Moreno, J. Garrett, and J.D. Embury: Intermetallics, 1999, vol. 7, pp. 1001–09.CrossRefGoogle Scholar
  72. 72.
    X.K. Peng, R. Wuhrer, G. Heness, and W.Y. Yeung: J. Mater. Sci., 1999, vol. 34, pp. 2029–38.CrossRefGoogle Scholar
  73. 73.
    L.E. Murr: J. Mater. Eng. Perf., 2010.Google Scholar
  74. 74.
    Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 147–52.Google Scholar
  75. 75.
    S. Guyot: Ph.D. Dissertation, University of Lille 1, France, 2005.Google Scholar
  76. 76.
    M. Watanabe, K. Feng, Y. Nakamura, and S. Kumai: Mater. Trans., 2011, vol. 52, pp. 953–59.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • M. N. Avettand-Fenoël
    • 1
  • R. Taillard
    • 1
  • G. Ji
    • 1
  • D. Goran
    • 2
  1. 1.Unité Matériaux Et Transformations (UMR CNRS 8207), Lille 1 UniversityVilleneuve d’AscqFrance
  2. 2.Bruker Nano GmbHBerlinGermany

Personalised recommendations