Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1331–1339 | Cite as

Hydrogen Embrittlement Behavior of 430 and 445NF Ferritic Stainless Steels

  • Sun Mi Kim
  • Young Soo Chun
  • Sung Yeun Won
  • Young Hwan Kim
  • Chong Soo Lee
Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Abstract

Hydrogen embrittlement behavior of two kinds of commercial ferritic stainless steels (STSs), 430 (UNS S43000) and 445NF (UNS S44536), was investigated by means of a series of cathodical hydrogen charging, slow strain rate tests, bending tests, and thermal desorption spectrometry analyses. The hydrogen concentration in 445NF STS was lower than that of 430 STS under identical hydrogen charging conditions because of the formation of a more passive layer. In addition, 445NF STS exhibited a larger passive range in the potentiodynamic polarization curve. However, resistance to hydrogen embrittlement of 445NF STS was inferior to that of 430 STS because of precipitation of the Laves phase at grain boundaries of the former at annealing temperatures of 873 K to 1123 K (600 °C to 850 °C). Crack propagation was found to occur along the interface between the Laves phase and the matrix. For 445NF STS, dissolution of the Laves phase by solution heat treatment at 1273 K (1000 °C) followed by quenching was effective in terms of suppressing degradation of its mechanical properties and formability, which were related to hydrogen embrittlement.

Keywords

Passive Film Hydrogen Embrittlement Passive Layer Lave Phase Ferritic Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are thankful for the financial support from POSCO, Korea.

References

  1. 1.
    K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R-Reports, 2009, vol. 65, pp. 39–104.CrossRefGoogle Scholar
  2. 2.
    N.R. Baddoo: J. Constr. Steel Res., 2008, vol. 64, pp. 1199–1206.CrossRefGoogle Scholar
  3. 3.
    Y.H. Lee, H. Lee, Y.I. Kim, and S.H. Nahm: Metall. Mater. Int., 2011, vol. 17, pp. 389–95.CrossRefGoogle Scholar
  4. 4.
    L. Zhang, M. Wen, M. Imade, S. Fukuyama, and K. Yokogawa: Acta Mater., 2008, vol. 56, pp. 3414–21.CrossRefGoogle Scholar
  5. 5.
    S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799–1808.Google Scholar
  6. 6.
    J.O. Ham, B.G. Kim, and S.H. Lee: Kor. J. Metall. Mater., 2011, vol. 49, pp. 1–8.CrossRefGoogle Scholar
  7. 7.
    C.L. Yu and T.P. Perng: Acta Metall. Mater., 1991, vol. 39, pp. 1091–99.CrossRefGoogle Scholar
  8. 8.
    M. Wang, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2005, vol. 52, pp. 403–08.CrossRefGoogle Scholar
  9. 9.
    J. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.Google Scholar
  10. 10.
    H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.CrossRefGoogle Scholar
  11. 11.
    M. Nagumo: ISIJ Int., 2001, vol. 41, pp. 590–98.CrossRefGoogle Scholar
  12. 12.
    H.G. Kim, I.H. Kim, S.Y. Park, J.Y. Park, and Y.H. Jeong: Kor. J. Metall. Mater., 2010, vol. 48, pp. 717–23.Google Scholar
  13. 13.
    A. Szummer, E. Jezierska, and K. Lublinska: J. Alloys Compd., 1999, vol. 293, pp. 356–60.CrossRefGoogle Scholar
  14. 14.
    K.H. So, J.S. Kim, Y.S. Chun, K.-T. Park, Y.K. Lee, and C.S. Lee: ISIJ Int., 2009, vol. 49, pp. 1952–59.CrossRefGoogle Scholar
  15. 15.
    J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, pp. 1519–26.CrossRefGoogle Scholar
  16. 16.
    W.S. Ji, Y.W. Jang, and J.G. Kim: Metall. Mater. Int., 2011, vol. 17, pp. 463–70.CrossRefGoogle Scholar
  17. 17.
    K. Takai and R. Watanuki: ISIJ Int., 2003, vol. 43, pp. 520–26.CrossRefGoogle Scholar
  18. 18.
    W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.Google Scholar
  19. 19.
    M. Nagumo, K. Takai, and N. Okuda: J. Alloys Compd., 1999, vols. 293–295, pp. 310–16.Google Scholar
  20. 20.
    A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng. A, 1997, vol. 238, pp. 317–28.CrossRefGoogle Scholar
  21. 21.
    S. Hinotani, Y. Ohmori, and F. Terasaki: Mater. Sci. Eng., 1985, vol. 76, pp. 57–69.CrossRefGoogle Scholar
  22. 22.
    F.-G. Wei, T. Hara, T. Tsuchida, and K. Tsuzaki: ISIJ Int., 2003, vol. 43, pp. 539–47.CrossRefGoogle Scholar
  23. 23.
    F. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 331–53.CrossRefGoogle Scholar
  24. 24.
    J.L. Lee and J.Y. Lee: Metall. Trans. A, 1986, vol. 17A, pp. 2183–86.Google Scholar
  25. 25.
    T. Tsuchida, T. Hara, and K. Tsuzaki: Tetsu-to-Hagané, 2002, vol. 88, pp. 771–78.Google Scholar
  26. 26.
    G.M. Evans and E.C. Rollason: J. Iron Steel Inst., 1969, vol. 207, pp. 1591–98.Google Scholar
  27. 27.
    H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–26.CrossRefGoogle Scholar
  28. 28.
    T.M. Adams, P. Korinko, and A. Duncan: Mater. Sci. Eng. A, 2006, vol. 424, pp. 33–39.CrossRefGoogle Scholar
  29. 29.
    K. Asami, K. Hashimoto, and S. Shimodaira: Corros. Sci., 1978, vol. 18, pp. 151–60.CrossRefGoogle Scholar
  30. 30.
    M.R. Louthan Jr. and R.G. Derrick: Metall. Trans. A, 1975, vol. 15, pp. 565–77.Google Scholar
  31. 31.
    M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, and D.E. Rawl Jr.: Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.CrossRefGoogle Scholar
  32. 32.
    T.-P. Perng and C.J. Altstetter: Acta Metall., 1988, vol. 36, pp. 1251–60.CrossRefGoogle Scholar
  33. 33.
    M.R. Piggott and A.C. Siarkowski: J. Iron Steel Inst., 1972, vol. 10, pp. 901–05.Google Scholar
  34. 34.
    M.L. Martin, I.M. Robertson, and P. Sofronis: Acta Mater., 2011, vol. 59, pp. 3680–87.CrossRefGoogle Scholar
  35. 35.
    T.F. de Andrade, A.M. Kliauga, R.L. Plaut, and A.F. Padilha: Mater. Charact., 2008, vol. 59, pp. 503–07.CrossRefGoogle Scholar
  36. 36.
    M.P. Sello and W.E. Stumpf: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5194–5202.CrossRefGoogle Scholar
  37. 37.
    M.P. Sello and W.E. Stumpf: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1840–47.CrossRefGoogle Scholar
  38. 38.
    G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, and K.S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159–65.CrossRefGoogle Scholar
  39. 39.
    Y. Mine, K. Tachibana, and Z. Horita: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8100–05.CrossRefGoogle Scholar
  40. 40.
    K.I. Kim and T.W. Hong: Kor. J. Metall. Mater., 2011, vol. 49, pp. 264–69.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Sun Mi Kim
    • 1
  • Young Soo Chun
    • 1
  • Sung Yeun Won
    • 2
  • Young Hwan Kim
    • 2
  • Chong Soo Lee
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Technical Research LaboratoriesPOSCOPohangKorea
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea

Personalised recommendations