Metallurgical and Materials Transactions A

, Volume 43, Issue 8, pp 2921–2931 | Cite as

The Effect of Aluminum Additions on the Microstructure and Thermomechanical Behavior of NiTiZr Shape-Memory Alloys

  • Derek Hsen Dai Hsu
  • Taisuke T. Sasaki
  • Gregory B. Thompson
  • Michele V. Manuel
Symposium: Physical and Mechanical Metallurgy of Shape Memory Alloys for Actuator Applications

Abstract

The microstructure, thermal cycling, and mechanical behavior of Ni48.5Ti31.5−xZr20Alx (x = 0, 1, 2, 3) alloys were studied in the solution-treated and aged condition using microscopy techniques, differential scanning calorimetry, and compression tests. The microscopy techniques used include optical, scanning, and transmission electron microscopy, and three-dimensional, atom–probe microscopy. The results of this study indicated a strong dependence of the transformation behavior on alloy chemistry and thermal cycling. The aluminum additions served to decrease transformation behaviors from 351 K to 596 K (78 °C to 323 °C) and reduce thermal stability. Additionally, aluminum was shown to increase the plateau stress in the aged condition, whereas the formation of coarse-grained intermetallic phases caused the embrittlement of the microstructure, reducing its ductility. The addition of Al resulted in the refinement of the coarse, lenticular precipitates identified as Ni4(Ti,Zr)3.

References

  1. 1.
    K. Otsuka and X.B. Ren: Intermetallics, 1999, vol. 7, pp. 511–28.CrossRefGoogle Scholar
  2. 2.
    G.B. Kauffman and I. Mayo: Chem. Educ., 1996, vol. 2, pp. 1–21.CrossRefGoogle Scholar
  3. 3.
    K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.CrossRefGoogle Scholar
  4. 4.
    S.F. Hsieh and S.K. Wu: Mater. Charact., 1998, vol. 41, pp. 151–62.CrossRefGoogle Scholar
  5. 5.
    Z.W. Feng, B.D. Gao, J.B. Wang, D.F. Qian, and Y.X. Liu: Mater. Sci. Forum, 2002, vols. 394–395, pp. 365–68.CrossRefGoogle Scholar
  6. 6.
    S.F. Hsieh and S.K. Wu: J. Alloys Compd., 1998, vol. 266, pp. 276–82.CrossRefGoogle Scholar
  7. 7.
    K.H. Eckelmeyer: Scr. Metall., 1976, vol. 10, pp. 667–72.CrossRefGoogle Scholar
  8. 8.
    S.F. Hsieh and S.K. Wu: J. Mater. Sci., 1997, vol. 32, pp. 989–96.CrossRefGoogle Scholar
  9. 9.
    K. Oh-ishi, Z. Horita, and M. Nemoto: Mater. Trans., Jpn. Inst. Met. (JIM), 1997, vol. 38, pp. 99–106.Google Scholar
  10. 10.
    L.J. Meng, Y. Li, X.Q. Zhao, J. Xu, and H.B. Xu: Intermetallics, 2007, vol. 15, pp. 814–18.CrossRefGoogle Scholar
  11. 11.
    J. Jung, G. Ghosh, and G.B. Olson: Acta Mater., 2003, vol. 51, pp. 6341–57.CrossRefGoogle Scholar
  12. 12.
    J. Jung: Ph.D. Dissertation, Northwestern University, Evanston, IL, 2003.Google Scholar
  13. 13.
    M.D. Bender: Ph.D. Dissertation, Northwestern University, Evanston, IL, 2008.Google Scholar
  14. 14.
    O. Rios, R. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, and M. Kaufman: Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE)—Smart Struct. Mater., 2005, vol. 5761, pp. 376–87.Google Scholar
  15. 15.
    J. Inczédy, T. Lengyel, and A.M. Ure: Compendium of Analytical Nomenclature: Definitive Rules 1997, 3rd ed., Blackwell Science, Osney Mead, Oxford, U.K.,1998, pp. 7–8.Google Scholar
  16. 16.
    S.D. Han, W.H. Zou, S. Jin, Z. Zhang, and D.H. Yang: Scripta Metall. Mater., 1995, vol. 32, pp. 1441–46.CrossRefGoogle Scholar
  17. 17.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–39.CrossRefGoogle Scholar
  18. 18.
    M.K. Miller, K.F. Russell, and G.B. Thompson: Ultramicroscopy, 2005, vol. 102, pp. 287–98.CrossRefGoogle Scholar
  19. 19.
    L.A. Giannuzzi and F.A. Stevie: Micron, 1999, vol. 30, pp. 197–204.CrossRefGoogle Scholar
  20. 20.
    S.K. Wu and S.F. Hsieh: J. Alloys Compd., 2000, vol. 297, pp. 294–302.CrossRefGoogle Scholar
  21. 21.
    K. Otsuka and C.M. Wayman: Shape Memory Materials, 1st ed., Cambridge University Press, Cambridge, U.K., 1998, pp. 68–71.Google Scholar
  22. 22.
    S. Miyazaki, Y. Igo, and K. Otsuka: Acta Metall., 1986, vol. 34, pp. 2045–51.CrossRefGoogle Scholar
  23. 23.
    K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I.V. Kireeva, and H.J. Maier: J. Eng. Mater. Technol.—Trans. Am. Soc. Mech. Eng. (ASME), 1999, vol. 121, pp. 19–27.Google Scholar
  24. 24.
    K. Gall, and H. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.CrossRefGoogle Scholar
  25. 25.
    J. Khalil-Allafi, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.CrossRefGoogle Scholar
  26. 26.
    C.V. Howard and M.G. Reed: Unbiased Stereology: Three-Dimensional Measurement in Microscopy, 1st ed., BIOS Scientific Publishers/Springer, New York, NY, 1998, pp. 55–57.Google Scholar
  27. 27.
    M.D. Bender and G.B. Olson: Proc. Int. Conf. Martensitic Transform. (ICOMAT'08), TMS, Warrendale, PA, 2010, pp.159–66.Google Scholar
  28. 28.
    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, New York, NY, 2009, pp. 341–44.Google Scholar
  29. 29.
    A.M. Sandu, K. Tsuchiya, S. Yamamoto, Y. Todaka, and M. Umemoto: Scripta Mater., 2006, vol. 55, pp. 1079–82.CrossRefGoogle Scholar
  30. 30.
    J.W. Martin: Concise Encyclopedia of the Structure of Materials, 1st ed., Elsevier, Amsterdam, the Netherlands 2007, pp. 243–46.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Derek Hsen Dai Hsu
    • 1
  • Taisuke T. Sasaki
    • 2
    • 3
  • Gregory B. Thompson
    • 2
  • Michele V. Manuel
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA
  3. 3.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations