Metallurgical and Materials Transactions A

, Volume 43, Issue 10, pp 3767–3775 | Cite as

Grain Selection During Casting Ni-Base, Single-Crystal Superalloys with Spiral Grain Selector

  • S. F. Gao
  • L. Liu
  • N. Wang
  • X. B. Zhao
  • J. Zhang
  • H. Z. Fu


The behavior of grain selection in a spiral grain selector during investment casting of a Ni-base, single-crystal (SX) superalloy, DD3, has been investigated by electron backscattered diffraction (EBSD) techniques and optical microscopy. The results indicated that the main function of starter block is to optimize the crystal orientation. During the process of grain selection in spiral passage, the grain near the inner wall of spiral passage was usually selected as the final single crystal. It was found that the dendrites near the inner wall could develop new tertiary dendritic arms that paralleled the primary dendrites from the secondary dendritic arms to overgrow the dendrites far away from the inner wall. The crystal orientation that was examined by X-ray diffraction revealed that (1) the crystal orientation did not change obviously with increasing spiral thickness or angle and (2) the crystal orientation could be optimized by increasing the withdrawal rate and ceramic mold temperature. The influence of pouring temperature on crystal orientation was also discussed.


Directional Solidification Crystal Orientation Withdrawal Rate Grain Texture Ceramic Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the financial support of the National Basic Research Program of China (Nos. 2010CB631202 and 2011CB610406), the National Natural Science Foundation of China (Nos. 50827102, 50931004 and 51171151), the Aeronautical Science Foundation of China (No. 2010ZE53048), the China Postdoctoral Science Foundation funded project (No. 20100481361), and the Research Fund of the State Key Laboratory of Solidification Processing (No. 09-BZ-2010).


  1. 1.
    R.C. Reed: The Superalloys Fundamental and Applications, Cambridge University Press, Cambridge, U.K., 2006, pp. 1–5.CrossRefGoogle Scholar
  2. 2.
    T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram, and J.S. Tu: Superalloys 1992, S.D. Antolokch, R.W. Stusrud, and R.A. MacKay, eds., TMS, Warrendale, PA, 1992, pp. 125–34.Google Scholar
  3. 3.
    S.M. Seo, J.H. Lee, Y.S. Yoo, C.Y. Jo, H. Miyahara, and K. Ogi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3150–59.CrossRefGoogle Scholar
  4. 4.
    X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang, H.Z. Fu: J. Mater. Sci., 2010, vol. 45, pp. 6101–07.CrossRefGoogle Scholar
  5. 5.
    A. Shyam, C.J. Torbet, S.K. Jha, J.M. Larsen, M.J. Caton, C.J. Szczepanski, T.M. Pollock, and J.W. Jones: Superalloys 2004, K.A. Green, T.M. Pollock, and H. Harada, eds., TMS, Warrendale, PA, 2004, pp. 259–68.Google Scholar
  6. 6.
    R.C. Reed: The Superalloys Fundamental and Applications, Cambridge University Press, Cambridge, U.K., 2006, pp. 122–30.CrossRefGoogle Scholar
  7. 7.
    M.J. Goulette, P.D. Spilling, and R.P. Arthey: Superalloys 1984, M. Gell, C.S. Kortovich, and R.H. Bricknell, eds., TMS, Warrendale, PA, 1984, pp. 167–76.Google Scholar
  8. 8.
    M. Meyer ter Vehn, D. Dedecke, U. Paul, and P.R. Sahm: Superalloys 1996, R.D. Kissmger, D.J. Deye, and D.L Anton, eds., TMS, Warrendale, PA, 1996, pp. 471–79.Google Scholar
  9. 9.
    R.A. Hobbs, S. Tin, and C.M.F. Rae: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2761–73.CrossRefGoogle Scholar
  10. 10.
    P. Auburtin, T. Wang, S.L. Cockcroft, and A. Mitchell: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 801–11.CrossRefGoogle Scholar
  11. 11.
    A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M.F.X. Gigliottii, and T.M. Pollock: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3221–31.CrossRefGoogle Scholar
  12. 12.
    E.W. Ross and K.S. O’Hara: Superalloys 1996, R.D. Kissinger, D.J. Deye, and D.L. Anton, eds., TMS, Warrendale, PA, 1996, pp. 19–26.Google Scholar
  13. 13.
    A.D. Cetel and D.N. Duhl: Superalloys 1988, S. Reichman, D.N. Duhl, and G. Maurer, eds., TMS, Warrendale, PA, 1988, pp. 235–44.Google Scholar
  14. 14.
    G.J.S. Higginbotham: Mater. Sci. Technol., 1986, vol. 2, pp. 442–60.CrossRefGoogle Scholar
  15. 15.
    S. Tin, T.M. Pollock, and W.T. King: Superalloys 2000, K.A. Green, T.M. Pollock, and R.D. Kissinger, eds., TMS, Warrendale, PA, 2000, pp 201–10.Google Scholar
  16. 16.
    R.A. MacKay and R.D. Maier: Metall. Trans. A, 1982, vol. 13A, pp. 1747–54.Google Scholar
  17. 17.
    H.J. Dai: Ph.D. Dissertation, University of Leicester, Leicester, U.K., 2009.Google Scholar
  18. 18.
    P. Carter, D.C. Cox, C.A. Gandin, and R.C. Reed: Mater. Sci. Eng. A, 2000, vol. 280A, pp. 233–46.Google Scholar
  19. 19.
    H. Esaka, K. Shinozuka, and M. Tamura: Mater. Sci. Eng. A, 2005, vols. 413–414A, pp. 151–55.Google Scholar
  20. 20.
    H.J. Dai, J.C. Gebelin, N. D’Souza, P.D. Brown, and H.B. Dong: Int. J. Cast Met. Res., 2009, vol. 22, pp. 54–57.CrossRefGoogle Scholar
  21. 21.
    S.M. Seo, I.S. Kim, J.H. Lee, C.Y Jo, H. Miyahara, and K. Ogi: Metall. Mater. Int., 2009, vol. 15, pp. 391–98.CrossRefGoogle Scholar
  22. 22.
    H.J. Dai, J.C. Gebelin, M. Newell, R.C. Reed, N. D’Souza, P.D. Brown, and H.B. Dong: Superalloys 2008, R.C. Reed and K.A. Green, eds., TMS, Warrendale, PA, 2008, pp. 367–74.Google Scholar
  23. 23.
    H.J. Dai, N. D’Souza, and H.B. Dong: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3430–38.CrossRefGoogle Scholar
  24. 24.
    H.J. Dai, H.B. Dong, N. D’Souza, J.C. Gebelin, and R.C. Reed: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3439–46.CrossRefGoogle Scholar
  25. 25.
    Z.Q. Guo, T. Fu, and H.Z. Fu: Mater. Charact., 2000, vol. 44, pp. 431–34.CrossRefGoogle Scholar
  26. 26.
    M.G. Ardakani, N. D’Souza, B.A. Shollock, and M. McLean: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2887–93.CrossRefGoogle Scholar
  27. 27.
    N. D’Souza, M.G. Ardakani, M. McLean, and B.A. Shollock: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2877–86.CrossRefGoogle Scholar
  28. 28.
    Ch.-A. Gandin, M. Rappaz, D. West, and B.L. Adams: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1543–51.Google Scholar
  29. 29.
    S.M. Seo, I.S. Kim, C.Y. Jo, and K. Ogi: Mater. Sci. Eng. A, 2007, vols. 449–451A, pp. 713–16.Google Scholar
  30. 30.
    B. Chalmers: Principles of Solidification, Wiley, New York, NY, 1964.Google Scholar
  31. 31.
    P.N. Quested and M. Mclean: Mater. Sci. Eng., 1984, vol. 65, pp. 171–80.CrossRefGoogle Scholar
  32. 32.
    X.B. Meng, J.G. Li, T. Jin, X.F. Sun, C.B. Sun, and Z.Q. Hu: J. Mater. Sci. Technol., 2011, vol. 27, pp. 118–26.CrossRefGoogle Scholar
  33. 33.
    M.G. Ardakani, N. D’Souza, A. Wagner, B.A. Shollock, and M. Mclean: Superalloys 2000, K.A. Green, T.M. Pollock, and R.D. Kissinger, eds., TMS, Warrendale, PA, 2000, pp. 219–28.Google Scholar
  34. 34.
    Y.Z. Zhou, A. Volek, and N.R. Green: Acta Mater., 2008, vol. 56, pp. 2631–37.CrossRefGoogle Scholar
  35. 35.
    W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • S. F. Gao
    • 1
  • L. Liu
    • 1
  • N. Wang
    • 1
  • X. B. Zhao
    • 1
  • J. Zhang
    • 1
  • H. Z. Fu
    • 1
  1. 1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations