Advertisement

Metallurgical and Materials Transactions A

, Volume 43, Issue 9, pp 3097–3107 | Cite as

Tailored Heat Treated Accumulative Roll Bonded Aluminum Blanks: Microstructure and Mechanical Behavior

  • Verena Maier
  • Tina Hausöl
  • Christian W. Schmidt
  • Wolfgang Böhm
  • Hung Nguyen
  • Marion Merklein
  • Heinz Werner Höppel
  • Mathias Göken
Article

Aluminum alloy AA6016 was accumulative roll bonded up to eight cycles and investigated regarding formability by bending tests. Due to the limited bendability of accumulative roll bonding (ARB) processed materials, a tailored laser heat treatment was performed along the bending edge before forming. This tailored laser heat treatment causes a local recrystallization and recovery of the bending samples at the deformation zone, which locally increases ductility and allows higher bending angles achievable with lower forming forces. Between the recrystallized heat treated zone and the unaffected ultrafine-grained (UFG) base material, a gradient in grain size with a bimodal region is formed. This observed microstructural profile is confirmed by local mechanical testing measuring the hardness and strain rate sensitivity by nanoindentation techniques.

Keywords

Strain Rate Sensitivity Accumulative Roll Bonding Heat Treated Sample Punch Force Accumulative Roll Bonding Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its “Excellence Initiative,” supports the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen–Nürnberg. The authors are also very grateful to Novelis Switzerland SA for supplying the material.

References

  1. 1.
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8.CrossRefGoogle Scholar
  2. 2.
    N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44.CrossRefGoogle Scholar
  3. 3.
    H.W. Höppel, J. May, and M. Göken: Adv. Eng. Mater., 2004, vol. 6, pp. 781–84.CrossRefGoogle Scholar
  4. 4.
    N. Tsuji: Bulk Nanostructured Materials, Wiley-VCH, Weinheim, 2009, pp. 235–53.CrossRefGoogle Scholar
  5. 5.
    N. Tsuji: Nanostructured Metals and Alloys, Woodhead Publishing, Philadephia, PA, 2011, pp. 40–58.CrossRefGoogle Scholar
  6. 6.
    I. Topic, H.W. Höppel, D. Staud, M. Merklein, M. Geiger, and M. Göken: Adv. Eng. Mater., 2008, vol. 10, pp. 1101–09.CrossRefGoogle Scholar
  7. 7.
    I. Topic, H.W. Höppel, and M. Göken: Mater. Sci. Forum, 2008, vols. 584–586, pp. 833–39.CrossRefGoogle Scholar
  8. 8.
    R. Lapovok, P.W.J. McKenzie, P.F. Thomson, and S.L. Semiatin: Int. J. Mater. Res., 2007, vol. 98, pp. 325–31.Google Scholar
  9. 9.
    I. Topic, T. Hausöl, U. Vogt, M. Merklein, H.W. Höppel, and M. Göken: unpublished research, 2011.Google Scholar
  10. 10.
    M. Merklein and U. Vogt: Key Eng. Mater., 2009, vols. 410–411, pp. 169–76.CrossRefGoogle Scholar
  11. 11.
    M. Merklein and U. Vogt: Proc. COMA 2009, 2010, pp. 135–40.Google Scholar
  12. 12.
    M. Geiger, M. Merklein, and M. Kerausch: Ann. CIRP 2004, 2004, vol. 53 (1), pp. 223–26.Google Scholar
  13. 13.
    M. Hogg: Herstellung und Umformung Lokal Wärmebehandelter Platinen, Beiträge zur Umformtechnik, DGM-Informationsgesellschaft, Frankfurt, 2006.Google Scholar
  14. 14.
    M. Merklein, D. Staud, and U. Vogt: Int. J. Microstruct. Mater. Prop., 2009, vol. 4, pp. 525–33.Google Scholar
  15. 15.
    E. Doege and B.-A. Behrens: Handbuch Umformtechnik, Springer-Verlag, Berlin, 2007, pp. 376–84.Google Scholar
  16. 16.
    M. Merklein and M. Kaupper: Key Eng. Mater., 2009, vols. 410–411, pp. 3–11.CrossRefGoogle Scholar
  17. 17.
    S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya: Mater. Sci. Eng. A, 2002, vol. 325, pp. 228–35.CrossRefGoogle Scholar
  18. 18.
    A.L.M. Costa, A.C.C. Reis, L. Kestens, and M.S. Andrade: Mater. Sci. Eng. A, 2005, vol. 406, pp. 279–85.CrossRefGoogle Scholar
  19. 19.
    G. Marathe and R.J. Hebert: J. Mater. Sci., 2010, vol. 45, pp. 4770–77.CrossRefGoogle Scholar
  20. 20.
    A. Böhner, V. Maier, K. Durst, H.W. Höppel, and M. Göken: Adv. Eng. Mater., 2011, vol. 13, pp. 251–55.CrossRefGoogle Scholar
  21. 21.
    T. Hausöl, H.W. Höppel, and M. Göken: J. Mater. Sci., 2010, vol. 45, pp. 4733–38.CrossRefGoogle Scholar
  22. 22.
    T. Hausöl, H.W. Höppel, and M. Göken: Mater. Sci. Forum, 2011, vols. 667–669, pp. 217–22.Google Scholar
  23. 23.
    V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: J. Mater. Res., 2011, vol. 26, pp. 1421–30.CrossRefGoogle Scholar
  24. 24.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.CrossRefGoogle Scholar
  25. 25.
    I. Topic, H.W. Höppel, and M. Göken: Int. J. Mater. Res., 2007, vol. 98, pp. 320–24.Google Scholar
  26. 26.
    DIN EN ISO 7438:2005: Metallische Werkstoffe–Biegeversuch, Beuth-Verlag, Berlin, 2005.Google Scholar
  27. 27.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–80.CrossRefGoogle Scholar
  28. 28.
    J.L. Hay and G.M. Pharr: ASM Handbook, 2000, vol. 8, pp. 232–43.Google Scholar
  29. 29.
    J. Scharnweber, W. Skrotzki, C.-G. Oertel, H.-G. Brokmeier, H.W. Höppel, I. Topic, and J. Jaschinksi: Adv. Eng. Mater., 2010, vol. 10, pp. 989–94.CrossRefGoogle Scholar
  30. 30.
    L.R. Vaidyanath, M.G. Nicholas, and D.R. Milner: Br. Weld. J., 1959, vol. 6, pp. 13–28.Google Scholar
  31. 31.
    L. Li, K. Nagai, and F. Yin: Sci. Technol. Adv. Mater., 2008, vol. 9, article no. 023001.Google Scholar
  32. 32.
    C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, and M. Göken: Mater. Sci. Forum, 2011, vols. 667–669, pp. 725–30.Google Scholar
  33. 33.
    E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.Google Scholar
  34. 34.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  35. 35.
    K. Durst, B. Backes, and M. Göken: Scripta Mater., 2005, vol. 52, pp. 1093–97.CrossRefGoogle Scholar
  36. 36.
    B. Backes, K. Durst, and M. Göken: Phil. Mag., 2006, vol. 86, pp. 5541–51.CrossRefGoogle Scholar
  37. 37.
    A. Vevecka-Priftaj, A. Böhner, J. May, H.W. Höppel, and M. Göken: Mater. Sci. Forum., 2008, vols. 584–586, pp. 741–47.CrossRefGoogle Scholar
  38. 38.
    L.W. Meyer, M. Hockauf, L. Krüger, and I. Schneider: Int. J. Mater. Res., 2007, vol. 98, pp. 191–99.Google Scholar
  39. 39.
    T. Qian, M. Marx, K. Schüler, M. Hockauf, and H. Vehoff: Acta Mater., 2010, vol. 58, pp. 2112–23.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Verena Maier
    • 1
  • Tina Hausöl
    • 1
  • Christian W. Schmidt
    • 1
  • Wolfgang Böhm
    • 2
  • Hung Nguyen
    • 2
  • Marion Merklein
    • 2
  • Heinz Werner Höppel
    • 1
  • Mathias Göken
    • 1
  1. 1.Department of Materials Science and Engineering, Institute I: General Materials PropertiesUniversity Erlangen-NürnbergErlangenGermany
  2. 2.Department of Mechanical Engineering, Chair of Manufacturing TechnologyUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations