Advertisement

Metallurgical and Materials Transactions A

, Volume 43, Issue 8, pp 2680–2686 | Cite as

Improving the Mechanical Properties of Fe-Nb-(Ni-Mn) Dendrite-Ultrafine Eutectic Composites via Controlling the Primary Phase Features

  • Jin Man ParkEmail author
  • Tae Eung Kim
  • Suk Jun Kim
  • Won Tae Kim
  • Uta Kühn
  • Jürgen Eckert
  • Do Hyang Kim
Symposium: Bulk Metallic Glasses VIII

Abstract

Tuning of microstructure by addition of austenite stabilizers effectively enhances the mechanical properties in Fe-Nb-(Ni-Mn) dendrite-ultrafine eutectic composites. The Fe93Nb7 alloy displays the improved plasticity up to 10 pct due to the introduction of a ductile α-Fe dendrite into the ultrafine eutectic matrix. Meanwhile, the Fe78Nb7Ni10Mn5 alloy, which forms an in-situ martensitic α′-Fe dendritic phase reinforced ultrafine eutectic composite exhibits excellent combination of a high fracture strength of 1.6 GPa and a large plastic strain of 11 pct. The investigations reveal that the characteristics of the modulated primary dendrites in the dendrite-ultrafine eutectic composites play an important role in manipulating the generation and propagation of shear bands, thus resulting in the improved mechanical properties and plastic deformation behavior.

Keywords

Austenite Martensite Shear Band Martensitic Transformation Select Area Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Defense Acquisition Program Administration (DAPA), the Agency for Defense Development (ADD), the Global Research Laboratory Program of the Korea Ministry of Science and Technology, and the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program of the Korea Ministry of Knowledge Economy. T.E. Kim acknowledges the support from the Second Stage of the Brain Korea 21 Project in 2010. Stimulating discussions with K.B. Kim, K.R. Rim, M. Stoica, N. Mattern, S. Pauly, and S. Scudino are gratefully acknowledged.

References

  1. 1.
    M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–556.CrossRefGoogle Scholar
  2. 2.
    G. He, J. Eckert, W. Löser, and L. Schultz: Nat. Mater., 2003, vol. 2, pp. 33–37.CrossRefGoogle Scholar
  3. 3.
    J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: Appl. Phys. Lett., 2008, vol. 93, p. 031913.CrossRefGoogle Scholar
  4. 4.
    Y.T. Zhu and X.Z. Liao: Nat. Mater., 2004, vol. 3, pp. 351–52.CrossRefGoogle Scholar
  5. 5.
    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–89.CrossRefGoogle Scholar
  6. 6.
    S.F. Guo, L. Liu, N. Li, and Y. Li: Scripta Mater., 2010, vol. 62, pp. 329–32.CrossRefGoogle Scholar
  7. 7.
    D.C. Hofmann: Science, 2010, vol. 10, pp. 1294–95.CrossRefGoogle Scholar
  8. 8.
    R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz: Mater. Trans., 2002, vol. 43, pp. 1670–75.CrossRefGoogle Scholar
  9. 9.
    C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.CrossRefGoogle Scholar
  10. 10.
    C. Fan, R.T. Ott, and T.C. Hufnagel: Appl. Phys. Lett., 2002, vol. 81, pp. 1020–22.CrossRefGoogle Scholar
  11. 11.
    D.V. Louzguine, L.V. Louzguina, H. Kato, and A. Inoue: Acta Mater., 2005, vol. 53, pp. 2009–17.CrossRefGoogle Scholar
  12. 12.
    J.M. Park, N. Mattern, U. Kühn, J. Eckert, K.B. Kim, W.T. Kim, K. Chattopadhyay, and D.H. Kim: J. Mater. Res., 2009, vol. 24, pp. 2605–09.CrossRefGoogle Scholar
  13. 13.
    G. He, W. Loser, and J. Eckert: Acta Mater., 2003, vol. 51, pp. 5223–34.CrossRefGoogle Scholar
  14. 14.
    H. Ma, L.L. Shi, J. Xu, and E. Ma: J. Mater. Res., 2007, vol. 22, pp. 314–25.CrossRefGoogle Scholar
  15. 15.
    J.M. Park, D.H. Kim, K.B. Kim, E. Fleury, M.H. Lee, W.T. Kim, and J. Eckert: J. Mater. Res., 2008, vol. 23, pp. 2984–89.CrossRefGoogle Scholar
  16. 16.
    J.M. Park, K.B. Kim, D.H. Kim, and J. Eckert: Appl. Phys. Lett., 2010, vol. 97, p. 251915.CrossRefGoogle Scholar
  17. 17.
    D.V. Louzguine, L.V. Louzguina, and A. Inoue: Intermetallics, 2007, vol. 15, pp. 181–86.CrossRefGoogle Scholar
  18. 18.
    D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Proc. Nat. Acad. Sci. USA, 2008, vol. 105, pp. 20136–40.Google Scholar
  19. 19.
    J.M. Park, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: Appl. Phys. Lett., 2008, vol. 93, p. 031913.CrossRefGoogle Scholar
  20. 20.
    M.L. Lee, Y. Li, and C.A. Schuh: Acta Mater., 2004, vol. 52, pp. 4121–31.CrossRefGoogle Scholar
  21. 21.
    L. Shi, H. Ma, T. Liu, J. Xu, and E. Ma: J. Mater. Res., 2006, vol. 21, pp. 613–22.CrossRefGoogle Scholar
  22. 22.
    J.M. Park, S.W. Sohn, T.E. Kim, K.B. Kim, W.T. Kim, and D.H. Kim: Scripta Mater., 2007, vol. 57, pp. 1153–56.CrossRefGoogle Scholar
  23. 23.
    S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert: Nat. Mater., 2010, vol. 9, pp. 473–77.CrossRefGoogle Scholar
  24. 24.
    S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert: Acta Mater., 2009, vol. 57, pp. 5445–53.CrossRefGoogle Scholar
  25. 25.
    S. Pauly, G. Liu, G. Wang, J. Das, K.B. Kim, U. Kühn, D.H. Kim, and J. Eckert: Appl. Phys. Lett., 2009, vol. 95, p. 101906.CrossRefGoogle Scholar
  26. 26.
    Y. Wu, Y. Xiao, G. Chen. C.T. Liu, and Z. Lu: Adv. Mater., 2010, vol. 22, pp. 2770–73.CrossRefGoogle Scholar
  27. 27.
    U. Kühn, N. Mattern, T. Gemming, U. Siegel, K. Werniewicz, and J. Eckert: Appl. Phys. Lett., 2007, vol. 90, p. 261901.CrossRefGoogle Scholar
  28. 28.
    K. Werniewicz, U. Kühn, N. Mattern, B. Bartusch, J. Eckert, J. Das, L. Schultz, and T. Kulik: Acta Mater., 2007, vol. 55, pp. 3513–20.CrossRefGoogle Scholar
  29. 29.
    J.M. Park, D.H. Kim, K.B. Kim, N. Mattern, and J. Eckert: J. Mater. Res., 2011, vol. 26, pp. 365–71.CrossRefGoogle Scholar
  30. 30.
    U. Kühn, J. Romberg, N. Mattern, H. Wendrock, and Eckert: J. Mater. Res., 2010, vol. 25, pp. 368–74.Google Scholar
  31. 31.
    A. Schlieter, U. Kühn, J. Eckert, and H.J. Seifert: J. Mater. Res., 2010, vol. 25, pp. 1164–71.CrossRefGoogle Scholar
  32. 32.
    J.M. Park, K.B. Kim, W.T. Kim, M.H. Lee, J. Eckert, and D.H. Kim: Intermetallics, 2008, vol. 16, pp. 642–50.CrossRefGoogle Scholar
  33. 33.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steel: Microstructure and Properties, 3rd ed., Butterworth-Heinemann Press, Oxford, United Kingdom, 2006.Google Scholar
  34. 34.
    M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.Google Scholar
  35. 35.
    T.E. Kim, J.M. Park, U. Kühn, J. Eckert, W.T. Kim, and D.H. Kim: Mater. Sci. Eng. A, 2012, vol. 531, pp. 51–54.CrossRefGoogle Scholar
  36. 36.
    K. Ishida: J. Alloys Compd., 1995, vol. 220, pp. 126–31.CrossRefGoogle Scholar
  37. 37.
    Z.F. Zhang, G. He, H. Zhang, and J. Eckert: Scripta Mater., 2005, vol. 52, pp. 945–49.CrossRefGoogle Scholar
  38. 38.
    J.M. Park, J. Jayaraj, D.H. Kim, N. Mattern, G. Wang, and J. Eckert: Intermetallics, 2010, vol. 18, pp. 1908–11.CrossRefGoogle Scholar
  39. 39.
    H.M. Yuan and J.W. Hutchinson: Int. J. Sol. Struct., 1989, vol. 25, pp. 1053–67.CrossRefGoogle Scholar
  40. 40.
    J.M. Park, D.H. Kim, N. Mattern, K.B. Kim, E. Fleury, and J. Eckert: J. Alloys Compd., 2011, vol. 509, pp. S367–70.CrossRefGoogle Scholar
  41. 41.
    K.F. Yao and C.Q. Zhang: Appl. Phys. Lett., 2010, vol. 90, p. 061901.CrossRefGoogle Scholar
  42. 42.
    X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and P.K. Liaw: Appl. Phys. Lett., 2007, vol. 91, p. 131901.CrossRefGoogle Scholar
  43. 43.
    M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 123–28.CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, W.H. Wang, and A. Greer: Nature Mater., 2006, vol. 5, pp. 857–60.CrossRefGoogle Scholar
  45. 45.
    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhau, M.X. Pan, and W.H. Wang: Science, 2007, vol. 315, pp. 1385–88.CrossRefGoogle Scholar
  46. 46.
    J.M. Park, D.H. Kim, M. Stoica, N. Mattern, R. Li, and J. Eckert: J. Mater. Res., 2011, vol. 26, pp. 2080–86.CrossRefGoogle Scholar
  47. 47.
    Y. Wu, Y. Xiao, G. Chen, C.T. Liu, and Z. Lu: Adv. Mater., 2010, vol. 22, pp. 2770–73.CrossRefGoogle Scholar
  48. 48.
    A. Concustell, J. Sort, J. Fornell, E. Rossinyol, S. Surinach, A. Gebert, G. Eckert, and M.D. Baro: J. Mater. Res., 2008, vol. 24, pp. 3146–53.CrossRefGoogle Scholar
  49. 49.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRefGoogle Scholar
  50. 50.
    P.V. Liddicoat, X.Z. Liao, Y.H. Zhao, Y.T. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nat. Commun., 2010, vol. 1, p. 63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Jin Man Park
    • 1
    Email author
  • Tae Eung Kim
    • 2
  • Suk Jun Kim
    • 3
  • Won Tae Kim
    • 4
  • Uta Kühn
    • 1
  • Jürgen Eckert
    • 1
    • 5
  • Do Hyang Kim
    • 2
  1. 1.Institute for Complex Materials, IFW DresdenDresdenGermany
  2. 2.Department of Metallurgical Engineering, Center for Non-Crystalline MaterialsYonsei UniversitySeoulRepublic of Korea
  3. 3.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.IT DivisionCheongju UniversityCheongjuRepublic of Korea
  5. 5.Institute of the Materials Science, TU DresdenDresdenGermany

Personalised recommendations