Metallurgical and Materials Transactions A

, Volume 43, Issue 5, pp 1395–1399 | Cite as

On the Formation of a Diffusion Bond from Cold-Spray Coatings

  • Qiang Wang
  • Nick Birbilis
  • Ming-Xing Zhang


To understand the development of diffusion bonding, which can increase the bonding strength, three different cold-sprayed coating/substrate systems were investigated, Ni/Cu, Cu/Cu, and Al/Mg, by annealing at increased temperatures for various times. The formation of intermetallic compounds in the Al/Mg system reduced the bonding strength dramatically. In Cu/Cu and Ni-Cu, diffusion bonds developed at lower temperatures as Ni-Cu forms an isomorphous system, which increased the bonding strength effectively. However, higher temperature annealing reduced bonding strength ultimately because of the Kirkendall pores.


Bond Strength Intermetallic Layer Diffusion Bond Shear Bond Strength Cohesive Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The authors are grateful to the CAST CRC and Australian Research Council (ARC) Centre of Excellence for Design in Light Metals for funding support.


  1. 1.
    H.Y. Lee, S.H. Jung, S.Y. Lee, Y.H. You, and K.H. Ko: Appl. Surf. Sci., 2005, vol. 252, pp. 1891–98.CrossRefGoogle Scholar
  2. 2.
    H. Lee, Y. Yu, Y. Lee, Y. Hong, and K. Ko: J. Therm. Spray Technol., 2004, vol. 13, pp. 184–89.CrossRefGoogle Scholar
  3. 3.
    Q. Wang, K. Spencer, N. Birbilis, and M.-X. Zhang: Surf. Coat. Technol., 2010, vol. 205, pp. 50–56.CrossRefGoogle Scholar
  4. 4.
    E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau: J. Therm. Spray Technol., 2007, vol. 16, pp. 661–68.CrossRefGoogle Scholar
  5. 5.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets: Surf. Coat. Technol., 2002, vol. 154, pp. 237–52.CrossRefGoogle Scholar
  6. 6.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan: Scripta Mater., 2005, vol. 53, pp. 845–50.Google Scholar
  7. 7.
    C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye: Acta Mater., 2005, vol. 53, pp. 2991–3000.CrossRefGoogle Scholar
  8. 8.
    Q. Wang, N. Birbilis, and M.-X. Zhang: Mater. Lett., 2011, vol. 65, pp. 1576–78.CrossRefGoogle Scholar
  9. 9.
    P. Richer, B. Jodoin, and L. Ajdelsztajn: J. Therm. Spray Technol., 2006, vol. 15, pp. 246–54.CrossRefGoogle Scholar
  10. 10.
    L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia: J. Therm. Spray Technol., 2006, vol. 15, pp. 495–500.CrossRefGoogle Scholar
  11. 11.
    K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda: J. Phys. D-Appl. Phys., 2009, vol. 42, p. 5.Google Scholar
  12. 12.
    A. Hall, D. Cook, R. Neiser, T. Roemer, and D. Hirschfeld: J. Therm. Spray Technol., 2006, vol. 15, pp. 233–38.CrossRefGoogle Scholar
  13. 13.
    C. Borchers, T. Schmidt, F. Gärtner, and H. Kreye: Appl. Phys. A: Mater. Sci. Process., 2008, vol. 90, pp. 517–26.CrossRefGoogle Scholar
  14. 14.
    Y.K. Han, N. Birbilis, K. Spencer, M.X. Zhang, and B.C. Muddle: Mater. Charact., 2010, vol. 61, pp. 1167–86.CrossRefGoogle Scholar
  15. 15.
    K. Spencer, D.M. Fabijanic, and M.X. Zhang: Surf. Coat. Technol., 2009, vol. 204, pp. 336–44.CrossRefGoogle Scholar
  16. 16.
    E. Calla, D. McCartney, and P. Shipway: J. Therm. Spray Technol., 2006, vol. 15, pp. 255–62.CrossRefGoogle Scholar
  17. 17.
    W.-Y. Li, C.-J. Li, and H. Liao: J. Therm. Spray Technol., 2006, vol. 15, pp. 206–11.CrossRefGoogle Scholar
  18. 18.
    W.-Y. Li, C. Zhang, X. Guo, J. Xu, C.-J. Li, H. Liao, C. Coddet, and K.A. Khor: Adv. Eng. Mater., 2007, vol. 9, pp. 418–23.CrossRefGoogle Scholar
  19. 19.
    G.B. Gibbs: J. Nucl. Mater., 1966, vol. 20, pp. 303–06.CrossRefGoogle Scholar
  20. 20.
    Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 278–83.Google Scholar
  21. 21.
    S.R. Shatynski, J.P. Hirth, and R.A. Rapp: Acta Metall., 1976, vol. 24, pp. 1071–78.CrossRefGoogle Scholar
  22. 22.
    M.X. Zhang, H. Huang, K. Spencer, and Y.N. Shi: Surf. Coat. Technol., 2010, vol. 204, pp. 2118–22.CrossRefGoogle Scholar
  23. 23.
    J.R. Davis: Copper and Copper Alloys, ASM International, New York, NY, 2001, pp. 51–53.Google Scholar
  24. 24.
    K. Spencer and M.-X. Zhang: Scripta Mater., 2009, vol. 61, pp. 44–47.CrossRefGoogle Scholar
  25. 25.
    C. Borchers, F. Gartner, T. Stoltenhoff, and H. Kreye: J. Appl. Phys., 2004, vol. 96, pp. 4288–92.CrossRefGoogle Scholar
  26. 26.
    H. Yang, X. Guo, G. Wu, W. Ding, and N. Birbilis: Corros. Sci., 2011, vol. 53, pp. 381–87.CrossRefGoogle Scholar
  27. 27.
    I.D. Choi, D.K. Matlock, and D.L. Olson: Mater. Sci. Eng. A, 1990, vol. A124, pp. 15–18.Google Scholar
  28. 28.
    A. Kuper, H. Letaw, L. Slifkin Jr., E. Sonder, C.T. Tomizuka: Phys. Rev., 1954, vol. 96, pp. 1224–25.Google Scholar
  29. 29.
    Y.C. Hsu and J.G. Duh: J. Electron. Mater., 2006, vol. 35, pp. 2164–71.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Qiang Wang
    • 1
    • 2
    • 3
  • Nick Birbilis
    • 3
    • 4
  • Ming-Xing Zhang
    • 1
    • 2
    • 3
  1. 1.School of Mechanical and Mining EngineeringThe University of QueenslandSt. LuciaAustralia
  2. 2.CRC for Alloy and Solidification Technology (CAST)MelbourneAustralia
  3. 3.Australian Research Council (ARC) Centre of Excellence for Design in Light MetalsClaytonAustralia
  4. 4.School of Material EngineeringMonash UniversityClaytonAustralia

Personalised recommendations