Metallurgical and Materials Transactions A

, Volume 44, Issue 2, pp 617–626 | Cite as

Investigating Damage Evolution at the Nanoscale: Molecular Dynamics Simulations of Nanovoid Growth in Single-Crystal Aluminum

  • M. A. Bhatia
  • K. N. Solanki
  • A. Moitra
  • M. A. Tschopp
Symposium: Multi-Scale Modeling of Microstructure Deformation on Materials Processing

Abstract

Nanovoid growth was investigated using molecular dynamics to reveal its dependence on void size, strain rate, crystallographic loading orientation, initial nanovoid volume fraction, and simulation cell size. A spherical nanovoid was embedded into a periodic face-centered cubic (fcc) Al lattice, and a remote uniaxial load was applied to elucidate dislocation nucleation and shear loop formation from the void surface as well as the subsequent void growth mechanisms. The nucleation stresses and void growth mechanisms were compared for four different strain rates (107 to 1010 seconds−1), five different simulation cell sizes (4-nm to 28-nm lengths), four different initial nanovoid volume fractions, and seven different tensile loading orientations representative of the variability within the stereographic triangle. The simulation results show an effect of the size scale, crystallographic loading orientation, initial void volume fraction, and strain rate on the incipient yield stress for simulations without a void (single-crystal bulk material). For instance, the crystallographic orientation dependence on yield stress was less pronounced for simulations containing a void. As expected, dislocations and shear loops nucleated on various slip systems for the different loading orientations, which included orientations favored for both single slip and multiple slip. The evolution of the nanovoid volume fraction with increasing strain is relatively insensitive to loading orientations, which suggests that the nanoscale plastic anisotropy caused by the initial lattice orientation has only a minor role in influencing the nanovoid growth rate. In contrast, a significant influence of the initial nanovoid volume fractions was observed on the yield stress, i.e., a ~35 pct decrease in yield stress was caused by introducing a 0.4 pct nanovoid volume fraction. Furthermore, a continuum-scale bridging parameter m—which is a material rate sensitivity parameter in continuum damage mechanics—was calculated and found to be close to 1. Consequently, atomistic simulations of this type can indeed inform continuum void growth models for application in multiscale models.

Notes

Acknowledgments

This material is based on work supported by the Department of Energy and the National Energy Technology Laboratory under award number DE-FC26-02OR22910 and the Office of Naval Research under contract number N00014-09-1-0661.

References

  1. 1.
    S. Tadashi: Trans. Jpn. Soc. Aeronaut. Space Sci., 1986, vol. 29, p. 169.Google Scholar
  2. 2.
    T. Pardoen: Acta Mater., 1998, vol. 46, pp. 541–52.CrossRefGoogle Scholar
  3. 3.
    A.L. Gurson: J. Eng. Mater. Tech., 1977, vol. 99, pp. 2–15.CrossRefGoogle Scholar
  4. 4.
    A. Needleman and V. Tvergaard: J. Mech. Phys. Solids, 1984, vol. 32, pp. 461–90.CrossRefGoogle Scholar
  5. 5.
    A.L. Stevens, L. Davison, and W.E. Warren: J. Appl. Phys., 1972, vol. 43, p. 4922.CrossRefGoogle Scholar
  6. 6.
    R.E. Rudd and J.F. Belak: Comput. Mater. Sci., 2002, vol. 24, pp.148–53.CrossRefGoogle Scholar
  7. 7.
    E.T. Seppala, J. Belak, and R.E. Rudd: Phys. Rev. B, 2004, vol. 69, p. 134101.CrossRefGoogle Scholar
  8. 8.
    E.T. Seppala, J. Belak, and R.E. Rudd: Phys. Rev. Lett., 2004, vol. 93, p. 245503.CrossRefGoogle Scholar
  9. 9.
    J. Marian, J. Knap, and M. Ortiz: Phys. Rev. Lett., 2004, vol. 93, p. 1.CrossRefGoogle Scholar
  10. 10.
    J. Marian, J. Knap, and M. Ortiz: Acta Mater., 2005, vol. 53, pp. 2893–900.CrossRefGoogle Scholar
  11. 11.
    J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.CrossRefGoogle Scholar
  12. 12.
    N.A. Fleck, J.W. Hutchinson, and V. Tvergaard: J. Mech. Phys. Solids, 1989, vol. 37, pp. 515–40.CrossRefGoogle Scholar
  13. 13.
    A. Needleman: J. Appl. Mech., 1987, vol. 54, p. 531.CrossRefGoogle Scholar
  14. 14.
    S. Xu and X. Deng: Nanotechnology, 2008, vol. 19, p. 115705.CrossRefGoogle Scholar
  15. 15.
    A. Moitra, M. Bhatia, and K.N. Solanki: Acta Mater., in press.Google Scholar
  16. 16.
    T. Pardoen and J.W. Hutchinson: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2467–2512.CrossRefGoogle Scholar
  17. 17.
    R. Becker, A. Needleman, S. Suresh, V. Tvergaard, and A.K. Vasudevan: Acta Metall., 1989, vol. 37, pp. 99–120.CrossRefGoogle Scholar
  18. 18.
    D. Steglich, T. Siegmund, and W. Brocks: Comput. Mater. Sci., 1999, vol. 16, pp. 404–13.CrossRefGoogle Scholar
  19. 19.
    A. Needleman: J. Appl. Mech., 1972, vol. 39, pp. 964–71.CrossRefGoogle Scholar
  20. 20.
    M.F. McClintock: Int. J. Frac., 1966, vol. 2, pp. 614–27.Google Scholar
  21. 21.
    W.M. Garrison and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.CrossRefGoogle Scholar
  22. 22.
    G.T. Gray, K.S. Vecchio, and M.F. Lopez: Microstructural Anisotropy on the Quasi-Static and Dynamic Fracture of 1080 Eutectoid Steel, Explomet Conference, Albuquerque, NM, 2000.Google Scholar
  23. 23.
    J. Tirosh, A. Shirizly, and L. Rubinski: Mech. Mater., 1999, vol. 31, pp. 449–60.CrossRefGoogle Scholar
  24. 24.
    B.I. Edelson and W.M. Baldwin: Trans. TMS-AIME, 1962, vol. 55, p. 230.Google Scholar
  25. 25.
    A.L. Stevens, L. Davison, and W.E. Warren: JAP, 1972, vol. 43, p. 4922.Google Scholar
  26. 26.
    G.P. Potirniche, J.L. Herndon, M.F. Horstemeyer, and X.W. Ling: Int. J. Plast., 2006, vol. 22, pp. 921–42.CrossRefGoogle Scholar
  27. 27.
    W.H. Liu, X.M. Zhang, J.G. Tang, and Y.X. Du: Comp. Mater. Sci., 2007, pp. 40–130.Google Scholar
  28. 28.
    V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 32, pp. 157–69.CrossRefGoogle Scholar
  29. 29.
    R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty: Mater. Sci. Eng. A, 2005, vol. 390, pp. 334–43.CrossRefGoogle Scholar
  30. 30.
    D.J. Bammann and K.N. Solanki: Int. J. Plast., 2010, vol. 26, no. 6, pp. 775–93.CrossRefGoogle Scholar
  31. 31.
    K.N. Solanki and D.J. Bammann: Acta Mech., 2010, vol. 213, pp. 27–38.CrossRefGoogle Scholar
  32. 32.
    D.C. Drucker and J.R. Rice: Eng. Frac. Mech., 1970, vol. 1, pp. 577–602.CrossRefGoogle Scholar
  33. 33.
    G. Rousselier: Nucl. Eng. Des, 1987, vol. 105, pp. 97–111.CrossRefGoogle Scholar
  34. 34.
    G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett: Int. J. Plast., 2006, vol. 22, pp. 257–78.CrossRefGoogle Scholar
  35. 35.
    M.A. Tschopp, D.E. Spearot, and D.L. McDowell: Modell. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 693–709.CrossRefGoogle Scholar
  36. 36.
    M.A. Tschopp and D.L. McDowell: J. Mech. Phys. Solids, 2008, vol. 56, pp. 1806–30.CrossRefGoogle Scholar
  37. 37.
    M.F. Horstemeyer, M.I. Baskes, A. Godfrey, and D.A. Hughes: Int. J. Plast., 2002, vol. 18, pp. 203–29.CrossRefGoogle Scholar
  38. 38.
    M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton: Acta Mater., 2001, vol. 49, pp. 4363–74.CrossRefGoogle Scholar
  39. 39.
    S. Groh, E.B. Marin, and M.F. Horstemeyer: Int. J. Appl. Mech., 2010, vol. 2, pp. 191–205.CrossRefGoogle Scholar
  40. 40.
    K.N. Solanki, M.F. Horstemeyer, M.I. Baskes, and H. Fang: Mech. Mater., 2005, vol. 37, nos. 2–3, pp. 317–30.CrossRefGoogle Scholar
  41. 41.
    S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers: Acta Mater., 2008, vol. 56, pp. 3874–86.CrossRefGoogle Scholar
  42. 42.
    M.A. Tschopp and D.L. McDowell: Appl. Phys. Lett., 2007, vol. 90, pp. 1–3.Google Scholar
  43. 43.
    M.A. Tschopp, D.E. Spearot, and D.L. McDowell: Influence of Grain Boundary Structure on Dislocation Nucleation in FCC Metals, Dislocations in Solids, J.P. Hirth, ed., vol. 14, 2008, pp. 43–139.Google Scholar
  44. 44.
    D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell: Acta Mater., 2007, vol. 55, pp. 705–14.CrossRefGoogle Scholar
  45. 45.
    M.A. Tschopp, G.J. Tucker, and D.L McDowell: Comp. Mater. Sci., 2008, vol. 44, pp. 351–62.CrossRefGoogle Scholar
  46. 46.
    M.A. Tschopp and D.L. McDowell: Int. J. Plast., 2008, vol. 24, pp. 191–217.CrossRefGoogle Scholar
  47. 47.
    S.J. Plimpton: J. Comp. Phys., 1995, vol. 117, pp. 1–19.CrossRefGoogle Scholar
  48. 48.
    S. Melchionna, G. Ciccotti, and B.L. Holian: Mol. Phys., 1993, vol. 78, pp. 533–44.CrossRefGoogle Scholar
  49. 49.
    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085–88.CrossRefGoogle Scholar
  50. 50.
    Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Phys Rev. B, 1999, vol. 59, p. 3393.CrossRefGoogle Scholar
  51. 51.
    F. Ercolessi and J.B. Adams: Europhys. Lett., 1994, vol. 26, pp. 583–88.CrossRefGoogle Scholar
  52. 52.
    I.J. Robertson, V. Heine, and M.C. Payne: Phys. Rev. Lett., 1993, vol. 70, pp. 1944–47.CrossRefGoogle Scholar
  53. 53.
    D.E. Spearot, K.I. Jacob, and D.L. McDowell: Acta Mater., 2005, vol. 53, pp. 3579–89.CrossRefGoogle Scholar
  54. 54.
    M.F. Sanner, J.C. Spehner, and A.J. Olson: Biopolymers, 1996, vol. 38, pp. 305–20.CrossRefGoogle Scholar
  55. 55.
    Molecular surface calculation library (MSMS), http://mgltools.scripps.edu/packages/MSMS/.
  56. 56.
    V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers: Acta Mater., 2004, vol. 53, p. 1397.CrossRefGoogle Scholar
  57. 57.
    L.M. Kachanov: Izvestiya Akad. Nauk USSR, Otd. Tech. Nauk, 1958, vol. 8, pp. 26–31.Google Scholar
  58. 58.
    A.C.F. Cocks and M.F. Ashby: J. Metal Sci., 1980, pp. 395–402.Google Scholar
  59. 59.
    A. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • M. A. Bhatia
    • 1
  • K. N. Solanki
    • 1
  • A. Moitra
    • 2
  • M. A. Tschopp
    • 3
  1. 1.School for Engineering of Matter, Transport, and Energy (SEMTE)Arizona State UniversityTempeUSA
  2. 2.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA

Personalised recommendations