Metallurgical and Materials Transactions A

, Volume 43, Issue 3, pp 1060–1069

Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach

  • Dongsheng Li
  • Yulan Li
  • Shenyang Hu
  • Xin Sun
  • Mohammad Khaleel


A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. At the mesoscale level, a phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies was taken into consideration. Gas bubbles were predicted to form, grow, and coalesce around grain boundary (GB) areas. On the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructures predicted by the phase field model were fed into the statistical continuum mechanics model to predict properties and behavior. A decrease of thermal conductivity during irradiation was demonstrated. The influence of irradiation flux, the exposure time, and the grain microstructure were investigated. If the initial GB microstructure was isotropic, the thermal conductivity under irradiation would be similarly isotropic. If the initial GB configuration was anisotropic, anisotropy of thermal conductivity would intensify under irradiation as gas bubbles coalesce around GB areas. The prediction of microstructure and property evolution of polycrystalline materials under irradiation by bridging two models in different scales were demonstrated successfully. This approach provides a deep understanding from a basic scientific viewpoint.


  1. 1.
    M.M. Abu-Khader: Prog. Nucl. Energy, 2009, vol. 51 (2), pp. 225–35.CrossRefGoogle Scholar
  2. 2.
    C. Greenhalgh and A. Azapagic: Environ. Sci. Policy, 2009, vol. 12 (7), pp. 1052–67.CrossRefGoogle Scholar
  3. 3.
    K.A. Rogers: Prog. Nucl. Energy, 2009, vol. 51 (2), pp. 281–89.CrossRefGoogle Scholar
  4. 4.
    C. Ronchi: J. Phys.: Condensed Matter, 1994, vol. 6, pp. L561–67.Google Scholar
  5. 5.
    M. Gavrillas, P. Hezielar, N.E. Todreas, and Y. Shatilla: Safety Features of Operating Light Water Reactors of Western, CRC Press, Boca Raton, FL, 1995.Google Scholar
  6. 6.
    D. Petti, D. Crawford, and N. Chauvin: MRS Bull., 2009, vol. 34 (1), pp. 40–45.CrossRefGoogle Scholar
  7. 7.
    W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, and E. Vernaz: MRS Bull., 2009, vol. 34 (1), pp. 46–53.CrossRefGoogle Scholar
  8. 8.
    T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, and S. Ukai: MRS Bull., 2009, vol. 34 (1), pp. 20–27.CrossRefGoogle Scholar
  9. 9.
    C. Ronchi: High Temp., 2007, vol. 45 (4), pp. 552–71.CrossRefGoogle Scholar
  10. 10.
    C.B. Basak, A.K. Sengupta, and H.S. Kamath: J. Alloys Compd., 2003, vol. 360 (1–2), pp. 210–16.CrossRefGoogle Scholar
  11. 11.
    J.K. Fink: J. Nucl. Mater., 2000, vol. 279 (1), pp. 1–18.CrossRefGoogle Scholar
  12. 12.
    D.S. Li, H. Garmestani, and J. Schwartz: J. Nucl. Mater., 2009, vol. 392 (1), pp. 22–27.CrossRefGoogle Scholar
  13. 13.
    S.Y. Hu, C.H. Henager, H.L. Heinisch, M. Stan, M.I. Baskes, and S.M. Valone: J. Nucl. Mater., 2009, vol. 392 (2), pp. 292–300.CrossRefGoogle Scholar
  14. 14.
    D.S. Li, M. Khaleel, X. Sun, and H. Garmestani: Computat. Mater. Sci., 2010, vol. 48 (1), pp. 133–39.CrossRefGoogle Scholar
  15. 15.
    S.Y. Hu, Y.L. Li, X. Sun, F. Gao, R. Devanathan, C.H. Henager, and M.A. Khaleel: Int. J. Mater. Res., 2010, vol. 101 (4), pp. 515–22.CrossRefGoogle Scholar
  16. 16.
    R.L. Mills, D.H. Liebenberg, and J.C. Bronson: Phys. Rev. B, 1980, vol. 21 (11), pp. 5137–48.CrossRefGoogle Scholar
  17. 17.
    L.L. Bonilla, A. Carpio, J.C. Neu, and W.G. Wolfer: Phys. D-Nonlinear Phenomena, 2006, vol. 222 (1–2), pp. 131–40.CrossRefGoogle Scholar
  18. 18.
    L.Q. Chen and J. Shen: Comput. Phys. Comm., 1998, vol. 108 (2–3), pp. 147–58.CrossRefGoogle Scholar
  19. 19.
    F. Gao, H.L. Heinisch, and R.J. Kurtz: J. Nucl. Mater., 2009, vol. 386, pp. 390–94.CrossRefGoogle Scholar
  20. 20.
    T. Sonoda, M. Kinoshita, I.L.F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V.V. Rondinella, and H. Matzke: Nucl. Instrum. Meth. Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 2002, vol. 191, pp. 622–28.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International (outside the USA) 2011

Authors and Affiliations

  • Dongsheng Li
    • 1
  • Yulan Li
    • 1
  • Shenyang Hu
    • 1
  • Xin Sun
    • 1
  • Mohammad Khaleel
    • 1
  1. 1.Fundamental and Computational Science Directorate, Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations