Metallurgical and Materials Transactions A

, Volume 43, Issue 3, pp 1017–1025 | Cite as

Effect of Solution Temperature on the Microstructure and Mechanical Properties of a Newly Developed Superalloy TMW-4M3

  • Zhihong Zhong
  • Yuefeng Gu
  • Yong Yuan
  • Toshio Osada
  • Chuanyong Cui
  • Tadaharu Yokokawa
  • Toshimitsu Tetsui
  • Hiroshi Harada


The influence of solution temperature on the microstructure and mechanical properties of TMW-4M3 superalloy has been investigated. Comparisons of mechanical properties have also been made between the heat-treated TMW-4M3 variants and the commercial U720Li. The key microstructural variables examined were grain size and the volume fraction and size of the strengthening γ′ precipitates that control the mechanical properties of these alloys. By increasing the solution temperature from 1373 K to 1393 K (1100 °C to 1120 °C), the volume fraction of primary gamma prime dropped from 16.9 pct to 14.5 pct, whereas the average grain size increased from 8.7 μm to 10.6 μm. Compared with an alloy with a smaller grain size, the alloy with a larger grain size exhibited superior resistances to creep and fatigue crack growth without the expense of reduced tensile strength and low-cycle fatigue resistance. This suggested that a higher solution temperature may benefit TMW-4M3 in terms of superior overall properties. The greater overall properties of TMW-4M3 variants than that of commercial U720Li were also demonstrated experimentally. The possible explanations for the improvement of mechanical properties were discussed.


Crack Growth Rate Fatigue Crack Growth Solution Temperature Stack Fault Energy Creep Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support provided by the NEDO program sponsored by Japanese government and by the Mitsubishi Materials Corporation, Japan. Additional acknowledgements are given to Drs. Junjo Fujioka and Masafumi Fukuda for their invaluable discussion and to the Kobe Materials Testing Laboratory, Japan, for its technical support. We also thank Mr. Liberty Wu from Manchester University for English improvement.


  1. 1.
    R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.CrossRefGoogle Scholar
  2. 2.
    M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85-97.CrossRefGoogle Scholar
  3. 3.
    R.J. Mitchell, M. Preuss, S. Tin, and M.C. Hardy: Mater. Sci. Eng. A, 2008, vol. 473, pp. 158-65.CrossRefGoogle Scholar
  4. 4.
    H. Monajati, M. Jahazi, R. Bahrami, and S. Yue: Mater. Sci. Eng. A, 2004, vol. 373, pp. 286-93.CrossRefGoogle Scholar
  5. 5.
    J.Y. Hwang, S. Nag, A.R.P. Singh, R. Srinivasan, J. Tiley, G.B. Viswanathan, H.L. Fraser, and R. Banerjee: Metall. Mater. Trans. A, vol. 40A, 2009, pp. 3059-68.CrossRefGoogle Scholar
  6. 6.
    K.R. Bain, M.L. Gambone, J.M. Hyzak, and M.C. Thomas: Superalloys, 1988, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, and C. Lund, eds., TMS, Warrendale, PA, 1988, pp. 13–22.Google Scholar
  7. 7.
    Y.F. Gu, H. Harada, C.Y. Cui, D.H. Ping, A. Sato, and J. Fujioka: Scripta Mater., 2006, vol. 55, pp. 815-18.CrossRefGoogle Scholar
  8. 8.
    S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A, 2008, vol. 498, pp. 266-71.CrossRefGoogle Scholar
  9. 9.
    J. Gayda and D. Furrer: Adv. Mater. Process, 2003, vol. 7, pp. 36-39.Google Scholar
  10. 10.
    X.B. Huang, Y. Kang, H.H. Zhou, Y. Zhang, and Z.Q. Hu: Mater. Lett., 1998, vol. 36, pp. 210-13.CrossRefGoogle Scholar
  11. 11.
    A. Bauer, S. Neumeier, F. Pyczakc, and M. Göken: Scripta Mater., 2010, vol. 63, pp. 1197-1200.CrossRefGoogle Scholar
  12. 12.
    Y. Yuan, Y.F. Gu, C.Y. Cui, T. Osasa, T. Tetsui, T. Yokokawa, and H. Harada: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5106-11.CrossRefGoogle Scholar
  13. 13.
    F.E. Sczerzenie and G.E. Maurer: Superalloys 1984, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich, eds., TMS, Warrendale, PA, 1984, pp. 573–82.Google Scholar
  14. 14.
    J. Mao, K.M. Chang, W. Yang, K. Ray, S.P. Vase, and D.U. Furrer: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2441-52.CrossRefGoogle Scholar
  15. 15.
    R.L. Fleischer: Acta Metall., 1963, vol. 11, pp. 203-09.CrossRefGoogle Scholar
  16. 16.
    E. Nembach and G. Neite: Progr. Mater. Sci., 1985, vol. 29, pp. 177-319.CrossRefGoogle Scholar
  17. 17.
    W. Mangen and E. Nembach: Acta Metall., 1989, vol. 37, pp. 1451-63.CrossRefGoogle Scholar
  18. 18.
    K. Harris, G.L. Erickson, and R.E. Schwer: Superalloys, 1984, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Knet, and J.F. Radavich, eds., TMS, Warrendale, PA, 1984, pp. 221–30.Google Scholar
  19. 19.
    J. Mao, K.M. Chang, W. Yang, D.U. Furrer, K. Ray, and S.P. Vase: Mater. Sci. Eng. A, 2002, vol. 332, pp. 318-29.CrossRefGoogle Scholar
  20. 20.
    C.Y. Cui, Y.F. Gu, H. Harada, and A. Sato: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2921-27.Google Scholar
  21. 21.
    G.E. Maurer, L.A. Jackman, and J.A. Domingue: Proc. 4th Int. Symposium on Superalloys, Seven Springs, PA, ASM, Materials Park, OH, 1980, pp. 43-52.Google Scholar
  22. 22.
    G.L. Chen, L.Z. Zhuang, and J.L. Xu: Acta Metall. Sinica, 1986, vol. 22, pp. 453-60.Google Scholar
  23. 23.
    MV. Nathal, R.D. Maier, and L.J. Ebert: Metall. Trans. A, 1982, vol. 13A, pp. 1767-74.Google Scholar
  24. 24.
    G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, and M.J. Mills: Acta Metall., 2005, vol. 53, pp. 3041-57.Google Scholar
  25. 25.
    Y.F. Gu, C. Cui, D. Ping, H. Harada, T. Fukuda, and J. Fujioka: Mater. Sci. Eng. A, 2009, vols. 510-1, pp. 250-55.Google Scholar
  26. 26.
    J.C. Williams and E.A. Starke: Acta Mater., 2003, vol. 51, pp. 5775-99.CrossRefGoogle Scholar
  27. 27.
    C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, and H. Harada: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5465-69.CrossRefGoogle Scholar
  28. 28.
    R.N. Jarrett and J.K. Tien: Metall. Trans. A, 1982, vol. 13A, pp. 1021-32.Google Scholar
  29. 29.
    M.V. Nathal, R.D. Maier, and L.J. Ebert: Metall. Trans. A, 1982, vol. 13A, pp. 1767-74.Google Scholar
  30. 30.
    R. Merabtine, C. Bertrand, J.P. Dallas, J. Devaud-Rzepski, and M.F. Trichet: Scripta Metall. Mater., 1990, vol. 24, pp. 2203-08.CrossRefGoogle Scholar
  31. 31.
    Q. Feng, T.K. Nandy, S. Tin, and T.M. Pollock: Acta Mater., 2003, vol. 51, pp. 269-84.CrossRefGoogle Scholar
  32. 32.
    S. Ma, L. Carroll, and T.M. Pollock: Acta Mater., 2007, vol. 55, pp. 5802-12.CrossRefGoogle Scholar
  33. 33.
    Y. Yuan, Y.F. Gu, C.Y Cui, T. Osada, T. Yokokawa and H. Harada: Adv. Eng. Mater., 2011, 13: 296-300.CrossRefGoogle Scholar
  34. 34.
    D.U. Furrer and H.J. Fecht: Scripta Mater., 1999, vol. 40, pp. 1215-20.CrossRefGoogle Scholar
  35. 35.
    M. Vittori and A. Mignone: Mater. Sci. Eng., 1985, vol. 74, pp. 29-37.CrossRefGoogle Scholar
  36. 36.
    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed., Materials Park, OH, 2002.Google Scholar
  37. 37.
    L. Xiao, Y. Umakoshi, and J. Sun: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2841-50.CrossRefGoogle Scholar
  38. 38.
    J.B. Vogt, S. Degallaix, and J. Foct: Int. J. Fatigue, 1984, vol. 6, pp. 211-15.CrossRefGoogle Scholar
  39. 39.
    M. Murayama, K. Hono, H. Hirukawa, T. Ohmura, and S. Matsuoka. Scripta Mater., 1999, 40: 467-73.Google Scholar
  40. 40.
    H.F. Merrick: Metall. Trans., 1974, vol. 5, pp. 891-97.CrossRefGoogle Scholar
  41. 41.
    K.M. Chang and X.B. Liu: Mater. Sci. Eng. A, 2001, vol. 308, pp. 1-8.CrossRefGoogle Scholar
  42. 42.
    J. Gayda and R.V. Miner: Metall. Trans. A, 1983, vol. 14A, pp. 2301-08.Google Scholar
  43. 43.
    A.J. Manning, David, Knowles, and C.J. Small: US Patent, No. 7208116, 2007.Google Scholar
  44. 44.
    J. Gayda, T.P. Gabb, and R.V. Miner: Low Cycle Fatigue, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., ASTM STP, West Conshohocken, PA, 1988, pp. 293-309.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Zhihong Zhong
    • 1
  • Yuefeng Gu
    • 1
  • Yong Yuan
    • 1
  • Toshio Osada
    • 1
  • Chuanyong Cui
    • 2
  • Tadaharu Yokokawa
    • 1
  • Toshimitsu Tetsui
    • 1
  • Hiroshi Harada
    • 1
  1. 1.High Temperature Materials UnitNational Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Institute of Metal Research, China Academy of ScienceShenyangP.R. China

Personalised recommendations