Metallurgical and Materials Transactions A

, Volume 43, Issue 4, pp 1347–1362 | Cite as

Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys

  • Jason P. Hadorn
  • Kerstin Hantzsche
  • Sangbong Yi
  • Jan Bohlen
  • Dietmar Letzig
  • James A. Wollmershauser
  • Sean R. Agnew


Although conventional Mg alloys develop strong crystallographic textures during deformation that persist during annealing, the addition of rare earth (RE) elements can induce comparably weaker textures. The texture weakening effect is explored using hot-rolled Mg-Y alloys of a single phase to focus on the possibility of solute effects. Of the studied compositions, the richer alloys (≥0.17 at. pct) show the weakening effect, whereas the most dilute alloy (≤0.03 at. pct) does not. Electron backscattered diffraction (EBSD) analysis of intragranular misorientation axes (IGMA) indicate that the geometrically necessary dislocation (GND) content in dilute, hot-rolled alloys contain primarily basal 〈a〉 dislocations. At higher concentrations, the dislocations are predominantly prismatic 〈a〉 type. This change in the GND content suggests a change in dynamic recrystallization (DRX) mode. For example, nonbasal cross slip has been associated with continuous DRX. Furthermore, nonbasal slip might also promote more homogenous shear banding/twinning. Both of these mechanisms have been shown previously to give rise to more randomly oriented nuclei during DRX. Energy dispersive X-ray spectroscopy performed through transmission electron microscopy shows that Mg-Y exhibits significant grain boundary solute segregation, consistent with recent observations of solute clustering. Slow grain growth may be explained by solute drag. It is hypothesized that limited grain boundary mobility suppresses conventional discontinuous DRX, which has been shown to retain the deformation texture. The promotion of nonbasal slip and suppression of grain boundary mobility are proposed as solid solution-based mechanisms responsible for the observed texture weakening phenomenon in Mg rare earth alloys.


Slip System Boundary Segregation Solute Drag Prismatic Slip Solute Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The National Science Foundation (Grant Number DMR-0603066) and Deutsche Forschungsgemeinschaft (Grant Number LE 1395/3-1) World Materials Network support this research collaboration financially.


  1. 1.
    H. Friedrich and S. Schumann: J. Mater. Process. Tech., 2001, vol. 117, p. 276.CrossRefGoogle Scholar
  2. 2.
    X. Huang, K. Suzuki, and N. Saito: Scripta Mater., 2009, vol. 60, p. 651.CrossRefGoogle Scholar
  3. 3.
    X. Huang, K. Suzuki, and Y. Chino: Scripta Mater., 2010, vol. 63, p. 395.CrossRefGoogle Scholar
  4. 4.
    X. Gong, S.B. Kang, S. Li, and J.H. Cho: Mater. Des., 2009, vol. 30, p. 3345.CrossRefGoogle Scholar
  5. 5.
    X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito: J. Alloy. Compd., 2009, vol. 470, p. 263.CrossRefGoogle Scholar
  6. 6.
    Y. Chino and M. Mabuchi: Scripta Mater., 2009, vol. 60, p. 447.CrossRefGoogle Scholar
  7. 7.
    H. Watanabe and M. Fukusumi: Mater. Sci. Eng. A, 2008, vol. 477, p. 153.CrossRefGoogle Scholar
  8. 8.
    E. Yukutake, J. Kaneko, and M. Sugamata: Mater. Trans., 2003, vol. 44, p. 452.CrossRefGoogle Scholar
  9. 9.
    G. Mann, J.R. Griffiths, and C.H. Ca′ceres: J. Alloy. Compd., 2004, vol. 378, p. 188.CrossRefGoogle Scholar
  10. 10.
    S.R. Agnew and O. Duygulu: Int. J. Plast., 2005, vol. 21, p. 1161.CrossRefGoogle Scholar
  11. 11.
    E.A. Ball and P.B. Prangnell: Scripta Metall. Mater., 1994, vol. 31, p. 111.CrossRefGoogle Scholar
  12. 12.
    J.W. Senn and S.R. Agnew: Proceedings of Magnesium Technology in the Global Age, M.O. Pekguleryuz and L.W.F. Mackenzie, eds., Montreal, Canada, 2006, p. 115.Google Scholar
  13. 13.
    J.W. Senn and S.R. Agnew: Magnesium Technology 2008, Proc. TMS, Ed. H.I. Kaplan, TMS, Warrendale, PA, 2008, p. 153.Google Scholar
  14. 14.
    J.P. Hadorn and S.R. Agnew: Materials Science and Engineering, University of Virginia, Charlottesville, VA, K. Hantzsche, S. Yi, J. Bohlen, and D. Letzig: Magnesium Innovation Center (MagIC), HZG, Geesthacht, Germany, unpublished research, 2011.Google Scholar
  15. 15.
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S. Yi, and D. Letzig: Scripta Mater., 2010, vol. 63, p. 725.CrossRefGoogle Scholar
  16. 16.
    J.P. Hadorn and S.R. Agnew: Materials Science and Engineering, University of Virginia, Charlottesville, VA, K. Hantzsche, S. Yi, J. Bohlen, and D. Letzig: Magnesium Innovation Center (MagIC), HZG, Geesthacht, Germany, unpublished research, 2011.Google Scholar
  17. 17.
    C.S. Smith: Trans. AIME, 1948, vol. 175, p. 15.Google Scholar
  18. 18.
    R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing, Boston, MA, 1992.Google Scholar
  19. 19.
    T. Gladman: P. Roy. Soc. Lond. A Mat., 1966, vol. A294, p. 298.CrossRefGoogle Scholar
  20. 20.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, UK, 2004.Google Scholar
  21. 21.
    Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow: CALPHAD, 1988, vol. 12, p. 375.CrossRefGoogle Scholar
  22. 22.
    S.L. Couling, J.F. Pashak, and L. Sturkey: Trans. TMS-AIME, 1959, vol. 51, p. 94.Google Scholar
  23. 23.
    S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, p. 4277.CrossRefGoogle Scholar
  24. 24.
    M.R. Barnett, M.D. Nave, and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. 386, p. 205.Google Scholar
  25. 25.
    S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, p. 429.CrossRefGoogle Scholar
  26. 26.
    Y.B. Chun and C.H.J. Davies: Magnesium Technology 2010: Proceedings of TMS Eds., S.R. Agnew, N.R. Neelameggham, E.A. Nyberg, and W.H. Sillekens, TMS, Seattle, WA, 2010, p. 433.Google Scholar
  27. 27.
    Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3473-87.CrossRefGoogle Scholar
  28. 28.
    U.F. Kocks, C.N. Tome, and H-R. Wenk: Texture and Anisotropy, Cambridge University Press, New York, NY, 1998.Google Scholar
  29. 29.
    J.F. Nie: Physical Properties of Crystals, Oxford University Press, New York, NY, 1985.Google Scholar
  30. 30.
    M. Bestmann and D.J. Prior: J. Struct. Geol., 2003, vol. 25, p. 1597.CrossRefGoogle Scholar
  31. 31.
    D.J. Prior: J. Microscopy, 1999, vol. 195, p. 217.CrossRefGoogle Scholar
  32. 32.
    M.M. Avedesian and H. Baker, eds.: ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.Google Scholar
  33. 33.
    B.J. Kestel: Ultramicroscopy, 1986, vol. 19, p. 205.CrossRefGoogle Scholar
  34. 34.
    L. Bourgeois, B.C. Muddle, and J.F. Nie: Acta Mater., 2001, vol. 49, p. 2701.CrossRefGoogle Scholar
  35. 35.
    T. Walther, A. Recnik, and N. Daneu: Microchim. Acta, 2006, vol. 155, p. 313.CrossRefGoogle Scholar
  36. 36.
    Q. Miao, L. Hu, X. Wang, and E. Wang: J. Alloy. Compd., 2010, vol. 493, p. 87.CrossRefGoogle Scholar
  37. 37.
    C.W. Su, L. Lu, and M.O. Lai: Philos. Mag., 2008, vol. 88, p. 181.CrossRefGoogle Scholar
  38. 38.
    M. Wang, B.Y. Zong, and G. Wang: Comp. Mater. Sci., 2009, vol. 45, p. 217.CrossRefGoogle Scholar
  39. 39.
    S.G. Kim and Y.B. Park: Acta Mater., 2008, vol. 56, p. 3739.CrossRefGoogle Scholar
  40. 40.
    M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa: Mater. Sci. Eng. A, 1998, vol. 252, p. 248.CrossRefGoogle Scholar
  41. 41.
    A. Couret and D. Calliard: Acta Metall. Mater., 1985, vol. 33, p. 1447.CrossRefGoogle Scholar
  42. 42.
    A. Couret and D. Calliard: Acta Metall. Mater., 1985, vol. 33, p. 1455.CrossRefGoogle Scholar
  43. 43.
    W. Puschl: Progr. Mater. Sci., 2002, vol. 47, p. 415.CrossRefGoogle Scholar
  44. 44.
    A. Akhtar and E. Teghtsoonian: Acta Metall. Mater., 1969, vol. 17, p. 1339.CrossRefGoogle Scholar
  45. 45.
    A. Akhtar and E. Teghtsoonian: Acta Metall. Mater., 1969, vol. 17, p. 1351.CrossRefGoogle Scholar
  46. 46.
    A. Akhtar and E. Teghtsoonian: Philos. Mag., 1972, vol. 25, p. 897.CrossRefGoogle Scholar
  47. 47.
    F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. AIME, 1958, vol. 50, p. 856.Google Scholar
  48. 48.
    A. Urakami and M.E. Fine: Acta Metall. Mater., 1971, vol. 19, p. 887.CrossRefGoogle Scholar
  49. 49.
    A. Sato and M. Meshii: Acta Metall. Mater., 1973, vol. 21, p. 753.CrossRefGoogle Scholar
  50. 50.
    B. Raeisinia, S.R. Agnew, and A. Akhtar: Metall. Mater. Trans. A, 2011, vol. 42A, p. 1418.CrossRefGoogle Scholar
  51. 51.
    J.A. Yasi, L.G. Hector Jr., and D.R. Trinkle: Acta Mater., 2010, vol. 58, p. 5704.CrossRefGoogle Scholar
  52. 52.
    N. Stanford and M.R. Barnett: Mater. Sci. Eng. A, 2008, vol. 496, p. 399.CrossRefGoogle Scholar
  53. 53.
    J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and É. Martin: Acta Mater., 2011, vol. 59, p. 2046.CrossRefGoogle Scholar
  54. 54.
    J.J. Burton and E.S. Machlin: Phys. Rev. Lett., 1976, vol. 37, p. 1433.CrossRefGoogle Scholar
  55. 55.
    F.F. Abraham: Phys. Rev. Lett., 1981, vol. 46, p. 546.CrossRefGoogle Scholar
  56. 56.
    M.P. Seah: J. Catal., 1979, vol. 57, p. 450.CrossRefGoogle Scholar
  57. 57.
    P. Wynblatt and R.C. Ku: Surf. Sci., 1977, vol. 65, p. 511.CrossRefGoogle Scholar
  58. 58.
    R. Defay, I. Prigogine, A. Bellemans, and D.H. Everett: Surface Tension and Adsorption, Wiley, New York, NY, 1966, p. 158.Google Scholar
  59. 59.
    D. McLean: Grain Boundaries in Metals, Oxford University Press, London, UK, 1957.Google Scholar
  60. 60.
    F.L. Williams and D. Nason: Surf. Sci., 1974, vol. 45, p. 377.CrossRefGoogle Scholar
  61. 61.
    R.A. Swalin: Thermodynamics of Solids, 2nd ed., Wiley, New York, NY, 1972.Google Scholar
  62. 62.
    J. Friedel: Adv. Phys., 1954, vol. 3, p. 446.CrossRefGoogle Scholar
  63. 63.
    J.H. Jun, B.K. Park, J.M. Kim, K.T. Kim, and W.J. Jung: Mater. Sci. Forum, 2005, vols. 488–489, p. 107.CrossRefGoogle Scholar
  64. 64.
    S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng. A, 2009, vol. 526, p. 22.CrossRefGoogle Scholar
  65. 65.
    L.B. Tong, M.Y. Zheng, X.S. Hu, K. Wu, S.W. Xu, S. Kamado, and Y. Kojima, Mater. Sci. Eng. A, 2010, vol. 527, p. 4250.CrossRefGoogle Scholar
  66. 66.
    L.B. Tong, M.Y. Zheng, H. Chang, X.S. Hu, K. Wu, S.W. Xu, S. Kamado, and Y. Kojima: Mater. Sci. Eng. A, 2009, vol. 523, p. 289.CrossRefGoogle Scholar
  67. 67.
    N. Stanford, G. Sha, A. La Fontaine, M.R. Barnett, and S.P. Ringer: Metall. Mater. Trans A, 2009, vol. 40A, p. 2480.CrossRefGoogle Scholar
  68. 68.
    T. Al-Samman and X. Li: Mater. Sci. Eng. A, 2011, vol. 528, p. 3809.CrossRefGoogle Scholar
  69. 69.
    N. Stanford: Mater. Sci. Eng. A, 2010, vol. 527, p. 2669.CrossRefGoogle Scholar
  70. 70.
    S.A. Farzadfar, M. Sanjari, I.-H. Jung, E. Essadiqi, and S. Yue: Mater. Sci. Eng. A, 2011, vol. 528, p. 6742.CrossRefGoogle Scholar
  71. 71.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Elsevier Science Inc., Atlanta, GA, 1995.Google Scholar
  72. 72.
    M.R. Barnett: Acta Mater., 2007, vol. 55, p. 3271.CrossRefGoogle Scholar
  73. 73.
    M. Guillope and J.P. Poirier: J. Geophys. Res., 1979, vol. 84, p. 5557.CrossRefGoogle Scholar
  74. 74.
    E.A. Grey and G.T. Higgins: Acta Metall. Mater.., 1973, vol. 21, p. 309.CrossRefGoogle Scholar
  75. 75.
    M. Stipp, H. Stünitz, R. Heilbronner, and S.M. Schmid: J. Struct. Geol., 2002, vol. 24, p. 1861.CrossRefGoogle Scholar
  76. 76.
    S.H. White: Philos. T. Roy. Soc. A, 1976, vol. 283, p. 69.CrossRefGoogle Scholar
  77. 77.
    S.E. Ion, F.J. Humphreys, and S.H. White: Acta Metall. Mater., 1982, vol. 30, p. 1909.CrossRefGoogle Scholar
  78. 78.
    P.D. Tungatt and F.J. Humphreys: Acta Metall. Mater., 1984, vol. 32, p. 1625.CrossRefGoogle Scholar
  79. 79.
    A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, p. 1199.CrossRefGoogle Scholar
  80. 80.
    É. Martin, S. Godet, L. Jiang, A. Elwazri, P.J. Jacques, and J.J. Jonas: Proceeding of the 15th International Conference on Textures of Materials, A.D. Rollett, ed., ICOTOM, 2008, p. 15.Google Scholar
  81. 81.
    D. Ando and J. Koike: J. Jpn. I. Met., 2007, vol. 71, p. 684.CrossRefGoogle Scholar
  82. 82.
    L.W.F. Mackenzie and M.O. Pekguleryuz: Scripta Mater., 2008, vol. 59, p. 665.CrossRefGoogle Scholar
  83. 83.
    L. Jiang, J.J. Jonas, and R. Mishra: Mater. Sci. Eng. A, 2011, vol. 528, p. 6596.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Jason P. Hadorn
    • 1
  • Kerstin Hantzsche
    • 2
  • Sangbong Yi
    • 2
  • Jan Bohlen
    • 2
  • Dietmar Letzig
    • 2
  • James A. Wollmershauser
    • 1
  • Sean R. Agnew
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Magnesium Innovation Center (MagIC)Helmholtz Centre GeesthachtGeesthachtGermany

Personalised recommendations