Metallurgical and Materials Transactions A

, Volume 43, Issue 3, pp 806–821

Crystallographic Texture and Volume Fraction of α and β Phases in Zr-2.5Nb Pressure Tube Material During Heating and Cooling

  • R. W. L. Fong
  • R. Miller
  • H. J. Saari
  • S. C. Vogel


The phase transformations in an as-received Zr-2.5Nb pressure tube material were characterized in detail by neutron diffraction. The texture and volume fraction of α and β phases were measured on heating at eight different temperatures 373 K to 1323 K (100 °C to 1050 °C) traversing across the α/(α + β) and (α + β)/β solvus lines, and also upon cooling at 1173 K and 823 K (900 °C and 550 °C). The results indicate that the α-phase texture is quite stable, with little change in the {0002} and \( \left\{ {11\bar{2}0} \right\} \) pole figures during heating to 1123 K (850 °C). The β-phase volume fraction increased while a slight change in texture was observed until heating reached 973 K (700 °C). On further heating to 1173 K (900 °C), there appears a previously unobserved α-phase texture component due to coarsening of the prior primary α grains; meanwhile the transformed β-phase texture evolved markedly. At 1323 K (1050 °C), the α phase disappeared with only 100 pct β phase remaining but with a different texture than that observed at lower temperatures. On cooling from the full β-phase regime, a different cooldown transformed α-phase texture was observed, with no resemblance of the original texture observed at 373 K (100 °C). The transformed α-phase texture shows that the {0002} plane normals are within the radial-longitudinal plane of the pressure tube following the Burgers orientation relationship of (110)bcc//(0002)hcp and \( [\bar{1}11]_{\text{bcc}} //[11\bar{2}0]_{\text{hcp}} \) with a memory of the precursor texture of the primary α grains observed on heating at 1173 K (900 °C).


  1. 1.
    B.A. Cheadle: J. ASTM Int., 2010, vol. 7 (8), pp. 1–15.Google Scholar
  2. 2.
    J.P. Abriata and J.C. Bolcich: Bull. Alloy Phase Diagrams, 1982, vol. 3 (1), pp. 34–44.CrossRefGoogle Scholar
  3. 3.
    P. Gangli, J. Root, and R. Fong: Can. Metall. Q., 1995, vol. 34, pp. 211–18.CrossRefGoogle Scholar
  4. 4.
    J. Romero, M. Preuss, and J. Quinta Da Fonseca: Acta Mater., 2009, vol. 57, pp. 5501–11.CrossRefGoogle Scholar
  5. 5.
    H.R. Wenk, I. Lonardelli, and D. Williams: Acta Mater., 2004, vol. 52, pp. 1899–1907.CrossRefGoogle Scholar
  6. 6.
    N. Gey, E. Gautier, M. Humbert, A. Cerqueira, J.L. Bechade, and P.J. Archambault: J. Nucl. Mater., 2002, 302, pp. 175–84.CrossRefGoogle Scholar
  7. 7.
    J.P. Abriata, J.C. Bolcich, and D. Arias: Bull. Alloy Phase Diagrams, 1983, vol. 4 (2), pp. 2087–89.CrossRefGoogle Scholar
  8. 8.
    M.R. Daymond, R.A. Holt, S. Cai, P. Mosbrucker, and S.C. Vogel: Acta Mater., 2010, vol. 58, pp. 4053–66.CrossRefGoogle Scholar
  9. 9.
    W.G. Burgers: Physica I, 1934, pp. 561–86.Google Scholar
  10. 10.
    M. Griffiths, J.E. Winegar, and A. Buyers: J. Nucl. Mater., 2008, vol. 383, pp. 28–33.CrossRefGoogle Scholar
  11. 11.
    S.A. Aldridge and B.A. Cheadle: J. Nucl. Mater., 1972, vol. 42, pp. 32–42.CrossRefGoogle Scholar
  12. 12.
    S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, and D.J. Williams: Advan. X-ray Anal., 2004, vol. 47, pp. 431–36.Google Scholar
  13. 13.
    H.R. Wenk, L. Lutterotti, and S.C. Vogel: Nucl. Instrum. Meth. Phys. Res., 2003, vol. A515, pp. 575–88.Google Scholar
  14. 14.
    R.W.L. Fong, H. Saari, R. Miller, J. Teutsch, and S.C. Vogel: Paper presented at Thermec’ 2011 Conf., Quebec City, PQ, Aug. 1–5, 2011.Google Scholar
  15. 15.
    H.R. Wenk, L. Lutterotti, and S.C. Vogel: J. Powder Diffraction, 2010, vol. 25 (3), p. 14.Google Scholar
  16. 16.
    S. Matthies, L. Lutterotti, and H.R. Wenk: J. Appl. Crystallogr., 1997, vol. 30, pp. 31–42.CrossRefGoogle Scholar
  17. 17.
    S. Matthies, J. Pehl, H.R. Wenk, and S. Vogel: J. Appl. Crystallogr., 2005, vol. 38, pp. 462–75.CrossRefGoogle Scholar
  18. 18.
    L. Lutterotti, D. Chateigner, S. Ferrari, and J. Ricote: Thin Solid Films, 2004, vol. 450, pp. 34–41.CrossRefGoogle Scholar
  19. 19.
    H.R. Wenk: Preferred Orientation in Metals and Rocks, H.-R. Wenk, ed., Academic Press, New York, NY, 1985, pp. 11–47.Google Scholar
  20. 20.
    D.L. Douglass: The Metallurgy of Zirconium, Atomic Energy Review Supplement 1997, International Atomic Energy Agency, Vienna, pp. 4–7.Google Scholar
  21. 21.
    J. Goldak, L.T. Lloyd, and C.S. Barrett: Phys. Rev., 1966, vol. 144 (2), pp. 478–84.CrossRefGoogle Scholar
  22. 22.
    A. Heiming, W. Petry, J. Trampenau, W. Miekeley, and J. Cockcroft: J. Phys., Condens. Mater., 1992, vol. 4, pp. 727–33.CrossRefGoogle Scholar
  23. 23.
    R. Choubey and J.A. Jackman: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 431–40.CrossRefGoogle Scholar
  24. 24.
    I.T. Bethune and C.D. Williams: J. Nucl. Mater., 1968, vol. 29, pp. 129–32.CrossRefGoogle Scholar
  25. 25.
    D.O. Northwood and W.L. Fong: Metallography, 1980, vol. 13, pp. 97–115.CrossRefGoogle Scholar
  26. 26.
    G.J. Davies, D.J. Goodwill, and J.S. Kallend: J. Appl. Crystallogr., 1970, vol. 4, pp. 193–96.CrossRefGoogle Scholar
  27. 27.
    M. Griffiths, R.A. Holt, J. Li, and S. Saimoto: Microstructural Science, ASM INTERNATIONAL, Metals Park, OH, 1999, vol. 26, pp. 293–302.Google Scholar

Copyright information

© Printed with permission of Atomic Energy of Canada Limited 2011

Authors and Affiliations

  • R. W. L. Fong
    • 1
  • R. Miller
    • 2
  • H. J. Saari
    • 2
  • S. C. Vogel
    • 3
  1. 1.Atomic Energy of Canada Limited, Chalk River LaboratoriesChalk RiverCanada
  2. 2.Department of Mechanical & Aerospace EngineeringCarleton UniversityOttawaCanada
  3. 3.Lujan Center, LANSCE, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations