Metallurgical and Materials Transactions A

, Volume 43, Issue 5, pp 1477–1486 | Cite as

Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

Symposium: Neutron and X-Ray Studies of Advanced Materials IV

Abstract

During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels typically applied for superheaters, ferritic-martensitic X20CrMoV12-1 and lean austenitic stainless steel TP347H, respectively, are revealed by X-ray diffraction.

References

  1. 1.
    I.G. Wright, A.S. Sabau, and R.B. Dooley: Mater. Sci. Forum, 2008, vols. 595–598, pp. 387-95.CrossRefGoogle Scholar
  2. 2.
    S.R.J. Saunders and L.N. McCartney: Mater. Sci. Forum, 2006, vols. 522–523, pp. 119-28.CrossRefGoogle Scholar
  3. 3.
    O.H. Larsen, R.B. Frandsen, and R. Blum: VGB Power Tech., 2004, vol. 84, pp. 89-96.Google Scholar
  4. 4.
    A.N. Hansson and M. Montgomery: Mater. Sci. Forum, 2006, vols. 522–523, pp. 181-88.CrossRefGoogle Scholar
  5. 5.
    A.N. Hansson, M. Montgomery, and M.A.J. Somers: Oxid. Met., 2009, vol. 71, pp. 201-18.CrossRefGoogle Scholar
  6. 6.
    J. Jianmin, M. Montgomery, O.H. Larsen, and S.A. Jensen: Mater. Corros., 2005, vol. 56, pp. 542-49.CrossRefGoogle Scholar
  7. 7.
    I.G. Wright and R.B. Dooley: Int. Mater. Rev., 2010, vol. 55, pp. 129-67.CrossRefGoogle Scholar
  8. 8.
    A.N. Hansson and M. Montgomery: Proc. of 9 th Liege Conf.: Materials for Advanced Power Engineering, Eds. J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp. 1022–31.Google Scholar
  9. 9.
    M. Montgomery, A.N. Hansson, T. Vilhelmse, and S.A. Jensen: Mater. Corros., 2011, in press.Google Scholar
  10. 10.
    M.M. Rahman, J. Purbolaksono, and J. Ahmad: Eng. Fail. Anal., 2010, vol. 17, pp. 1490-94.CrossRefGoogle Scholar
  11. 11.
    D.L.C. Neves, J.R de Carvalho Seixas, E.B. Tinoco, A. da Cunha Rocha, and I. de Cerqueira Abud: Mater. Res., 2004, vol. 7, pp. 155–61.Google Scholar
  12. 12.
    A.S. Sabau and I.G. Wright: Oxid. Met., 2010, vol. 73, pp. 467-92.CrossRefGoogle Scholar
  13. 13.
    A.S. Sabau and I.G. Wright: J. Appl. Phys., 2009, vol. 106, pp. 023503-1–023503-8.CrossRefGoogle Scholar
  14. 14.
    M. Montgomery, S.A. Jensen, A. Hansson, O. Biede, and T. Vilhelmsen: Proc. of 9 th Liege Conf.: Materials for Advanced Power Engineering, Eds. J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp. 1096–1105.Google Scholar
  15. 15.
    J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser, and W.J. Quadakkers: Corros. Sci., 2004, vol. 46, pp. 2301-17.CrossRefGoogle Scholar
  16. 16.
    W. Christl, A. Rahmel, and M. Schütze: Oxid. Met., 1989, vol. 31, pp. 35-69.CrossRefGoogle Scholar
  17. 17.
    D.R. Clarke: Acta Mater., 2003, vol. 51, pp. 1393-1407.CrossRefGoogle Scholar
  18. 18.
    F.N. Rhines and J.S. Wolf: Metall. Trans., 1970, vol. 1, pp. 1701-10.CrossRefGoogle Scholar
  19. 19.
    C. Zhou, H. Ma, and L. Wang: Oxid. Met., 2009, vol. 71, pp. 335-41.CrossRefGoogle Scholar
  20. 20.
    H.E. Evans: Int. Mater. Rev., 1995, vol. 40, pp. 1-40.CrossRefGoogle Scholar
  21. 21.
    R. Krishnamurthy and D.J. Srolovitz: Acta Mater., 2004, vol. 52, pp. 3761-80.CrossRefGoogle Scholar
  22. 22.
    V. Hauk: Structural and Residual Stress Analysis by Non-Destructive Methods, Elsevier, Atlanta, GA, 1997.Google Scholar
  23. 23.
    M. Schütze: Protective Oxide Scales and their Breakdown, Series on Corrosion and Protection, Wiley, New York, NY, 1991.Google Scholar
  24. 24.
    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, vol. 11, Springer-Verlag, Germany, 1979.Google Scholar
  25. 25.
    X. Luo, R. Tang, C. Long, Z. Miao, Q. Peng, and C. Li: Nucl. Eng. Tech., 2008, vol. 40, pp. 147-54.CrossRefGoogle Scholar
  26. 26.
    H.J. Yearian, J.M. Kortright, and R.H. Langenheim: J. Chem. Phys., 1954, vol. 22, pp. 1196-98.CrossRefGoogle Scholar
  27. 27.
    G.C. Allen, K.R. Hallam, and J.A. Jutson: Powder Diffr., 1995, vol. 10, pp. 214-20.Google Scholar
  28. 28.
    P. Perrot: Landolt-Börnstein, New Series IV/11D3, Springer, 2008, pp. 1–27.Google Scholar
  29. 29.
    A.N. Hansson, K. Pantleon, F.B. Grumsen, and M.A.J. Somers: Oxid. Met., 2010, vol. 73, pp. 289-309.CrossRefGoogle Scholar
  30. 30.
    Z.-F. Hu and Z.-G. Yang: Mater. Sci. Eng. A, 2004, vol. 383, pp. 224-28.CrossRefGoogle Scholar
  31. 31.
    D.A. Skobir, M. Godez, A. Nagode, and M. Jenko: Surf. Interface Anal., 2010, vol. 42, pp. 717-21.CrossRefGoogle Scholar
  32. 32.
    M. Francois, B. Dionnet, J.M. Sprauel, and F. Nardou: J. Appl. Cryst., 1995, vol. 28, pp. 761-67.CrossRefGoogle Scholar
  33. 33.
    T. Oguri, K. Murata, and Y. Sato: J. Strain Anal., 2003, vol. 38, pp. 459-68.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Vattenfall A/S, Thermal Engineering DenmarkCopenhagenDenmark

Personalised recommendations