Metallurgical and Materials Transactions A

, Volume 43, Issue 8, pp 2687–2696 | Cite as

Effects of Changes in Chemistry on Flex Bending Fatigue Behavior of Al-Based Amorphous Alloy Ribbons

Symposium: Bulk Metallic Glasses VIII


The effects of changes in composition on the flow behavior and flex bending fatigue behavior of a series of Al-Gd-Ni-X (X = Fe or Co) amorphous alloy ribbons have been determined at 1 Hz at room temperature. It has been shown that the addition of Fe, Co, and Fe/Co combination into these materials increases the strength, T g, and T x1 in addition to the activation energy for crystallization. The lowest strength (i.e., 880 MPa) base alloy Al87Gd6Ni7 exhibited the best low-cycle fatigue (LCF) and worst high-cycle fatigue (HCF) behavior, whereas the higher strength alloys (~1100 MPa) Al85Gd6Ni7Fe2 and Al85Gd6Ni7Fe1Co1 exhibited worse LCF and better HCF behavior. The ratio of the stress amplitude at the fatigue limit at 1 × 106 cycles to uniaxial failure strength ranged from 0.25 to 0.37 (240 to 397 MPa), much higher than conventional aluminum alloys. These results are also compared with those obtained on other amorphous alloy ribbons.


Fatigue Fatigue Limit Stress Amplitude Bulk Metallic Glass Fatigue Crack Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the DARPA-SAM 2 program for support through Pratt & Whitney Corporation. The supply of materials from Pratt & Whitney and Ames laboratory is gratefully acknowledged. Useful discussions with A. L. Greer and G. J. Shiflet are also appreciated. Technical support was provided by the MMC group of Case Western Reserve University.


  1. 1.
    A.L. Greer: Science, 1995, vol. 267, p. 1947.CrossRefGoogle Scholar
  2. 2.
    A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27, p. 280.CrossRefGoogle Scholar
  3. 3.
    Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, p. 1640.CrossRefGoogle Scholar
  4. 4.
    A. Inoue, S. Sobu, D.V. Louzguine, H. Kimura, and K. Sasamori: J. Mater. Res., 2004, vol. 19, p. 1539.CrossRefGoogle Scholar
  5. 5.
    C.K. Huang and J.J. Lewandowski: Metall. Mater. Trans. A, 2010, vol. 41A, p. 2269.CrossRefGoogle Scholar
  6. 6.
    A.B. El-Shabasy, H.A. Hassan, Y. Liu, D. Li, and J.J. Lewandowski: Mater. Sci. Eng. A, 2009, vols. 513-514, p. 202.Google Scholar
  7. 7.
    C.J. Gilbert, J.M. Lippmann, R.O. Ritchie: Scripta Mater., 1998, vol. 38, p. 537.CrossRefGoogle Scholar
  8. 8.
    C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 39A, p. 1739.CrossRefGoogle Scholar
  9. 9.
    W.H. Peter, P.K. Liaw, R.A. Buchanan, C.T. Liu, C.R. Brooks, J.A. Horton, C.A. Carmichael, and J.L. Wright: Intermetallics, 2002, vol. 10, p. 1125.CrossRefGoogle Scholar
  10. 10.
    W.H. Peter, R.A. Buchanan, C.T. Liu, and P.K. Liaw: J. Non-Cryst. Solid, 2003, vol. 317, p. 187.CrossRefGoogle Scholar
  11. 11.
    R. Yavari, J.J. Lewandowski, and J. Eckert: J. Mater. Res., 2007, vol. 22, p. 255.CrossRefGoogle Scholar
  12. 12.
    G.Y. Wang, P.K. Liaw, A. Peter, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Intermetallics, 2006, vol. 14, p. 1091.CrossRefGoogle Scholar
  13. 13.
    Y. Yokoyama, P.K. Liaw, M. Nishijima, K. Hiraga, R.A. Buchanan, and A. Inoue: Mater. Trans., 2006, vol. 47, p. 1286.CrossRefGoogle Scholar
  14. 14.
    G.Y. Wang, D.C. Qiao, Y. Yokoyama, M. Freels, A. Inoue, and P.K. Liaw: J. Alloys Compd., 2009, vol. 483, p. 143.CrossRefGoogle Scholar
  15. 15.
    G.Y. Wang, P.K. Liaw, and M.L. Morrison: Intermetallics, 2009, vol. 17, p. 579.CrossRefGoogle Scholar
  16. 16.
    J.A. Verduzco, R.J. Hand, and H.A. Davies: Int. J. Fatigue, 2004, vol. 24, p. 1089.CrossRefGoogle Scholar
  17. 17.
    ASTM E 796-94, Standard Test Method for Ductility Testing of Metallic Foil, in 1999 Annual Book of ASTM Standards, vol. 03.01, ASTM, Philadelphia, PA.Google Scholar
  18. 18.
    H.D. Merchant, M.G. Minor, and Y.L. Liu: J. Electron. Mater., 1999, vol. 28, p. 998.CrossRefGoogle Scholar
  19. 19.
    H.D. Merchant, J.T. Wang, L.A. Glannuzzi, and Y.L. Liu: Circ. World, 2000, vol. 26, p. 7.CrossRefGoogle Scholar
  20. 20.
    J.J. Lewandowski, R. Varadarajan, B. Smith, C. Tuma, M. Shazly, and L.O. Vatamanu: Mater. Sci. Eng. A, 2008, vol. 486, p. 447.CrossRefGoogle Scholar
  21. 21.
    J. Caris, R. Varadarajan, J.J. Stephens Jr., and J.J. Lewandowski: Mater. Sci. Eng. A, 2008, vol. 491, p. 137.Google Scholar
  22. 22.
    J.J. Lewandowski, R. Varadarajan, B. Smith: Mater. Sci. Eng. A, 2008, vol. 492, p. 191.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang and A.L. Greer: J. Alloys Compd., 2007, vols. 434-438, p. 2.CrossRefGoogle Scholar
  24. 24.
    W.H. Wang, P. Wen, Y. Zhang, M.X. Pan, and R. Wang: Appl. Phys. Lett., 2001, vol. 79, p. 3947.CrossRefGoogle Scholar
  25. 25.
    R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: J. Appl. Phys., 2003, vol. 94, p. 904.CrossRefGoogle Scholar
  26. 26.
    R.D. Conner, Y. Li, W.D. Nix, and W.L. Johnson: Acta Mater., 2004, vol. 52, p. 2429.CrossRefGoogle Scholar
  27. 27.
    C.E. Packard, L.M. Witmer, and C.A. Schuh: Appl. Phys. Lett., 2008, vol. 92, p. 171911.CrossRefGoogle Scholar
  28. 28.
    A.B. El-Shabasy and J.J. Lewandowski: Scripta Mater., 2010, vol. 62, p. 1708.Google Scholar
  29. 29.
    W.H. Wang, P. Wen, L.M. Wang, Y. Zhang, M.X. Pan, D.Q. Zhao, and R.J. Wang: Appl. Phys. Lett., 2001, vol. 79, p. 3947.CrossRefGoogle Scholar
  30. 30.
    W.H. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and Y.S. Yao: Phys. Rev. B, 2000, vol. 62, p. 11292.CrossRefGoogle Scholar
  31. 31.
    Y. Guo and M. Li: J. Appl. Phys., 2010, vol. 108, p. 113510.CrossRefGoogle Scholar
  32. 32.
    A. Carpinteri and R. Brighenti: J. Mater. Sci., 2008, vol. 43, p. 4780.CrossRefGoogle Scholar
  33. 33.
    R. Jurcevic, D.L. DuQuesnay, T.H. Topper, and M.A. Pompetzki: Int. J. Fatigue, 1990, vol. 12, p. 259.CrossRefGoogle Scholar
  34. 34.
    A.B. El-Shabasy and J.J. Lewandowski: Metall. Mater. Trans. A, in press.Google Scholar
  35. 35.
    S.S. Manson: National Advisory Commission on Aeronautics: Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, OH, 1954.Google Scholar
  36. 36.
    L.F. Coffin: Trans. AIME, 1954, vol. 76, p. 931.Google Scholar
  37. 37.
    S.S. Manson and M.H. Hirschberg: Fatigue: An Interdisciplinary Approach, Syracuse University Press, Syracuse, NY, 1964.Google Scholar
  38. 38.
    A.H. Vormelker, O.L. Vatamanu, L. Kecskes, and J.J. Lewandowski: Metall. Mater. Trans. A, 2008, vol. 39A, p. 1922.CrossRefGoogle Scholar
  39. 39.
    H.A. Hassan, L. Kecskes, and J.J. Lewandowski: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2077.CrossRefGoogle Scholar
  40. 40.
    F. Spaepen: Acta Mater., 1977, vol. 25, p. 407.CrossRefGoogle Scholar
  41. 41.
    C. Fan, P.K. Liaw, V. Hass, J.J. Wall, H. Choo, A. Inoue, and C.T. Liu: Phys. Rev. B, 2006, vol. 74, p. 014205.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations