Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 13, pp 3907–3912 | Cite as

Mpemba-Like Behavior in Carbon Nanotube Resonators

  • P. Alex Greaney
  • Giovanna Lani
  • Giancarlo Cicero
  • Jeffrey C. Grossman
Symposium: Modeling, Simulation, and Theory of Nanomechanical Materials Behavior

Abstract

Surprising Mpemba-like dissipation is observed during computer simulated ring-down of the flexural modes of a single-walled carbon nanotube resonator. Vibrations are made to decay to zero faster by adding a larger initial excitation. We liken this counterintuitive observation to the well-known Mpemba effect in which hot water freezes faster that cold water. In both cases, the system seems to pose a memory of its thermal history; a paradoxical result that is reconciled if the dissipative state of the system is not described uniquely by the system’s average temperature. A vibrational mode projection algorithm is used to track the dissipation pathway, showing that dissipation is dependent strongly on the development of an athermal phonon population. The implications of Mpemba-like behavior in more general, and continuously driven, nanomechanical systems are discussed.

Keywords

Flexural Mode Excited Mode Microcanonical Ensemble Background Mode Attenuation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project received funding from the Defense Threat Reduction Agency—Joint Science and Technology Office for Chemical and Biological Defense (Grant HDTRA1-09-1-0006).

References

  1. 1.
    C. Rutherglen and P. Burke: Nano Lett., 2007, vol. 7, pp. 3296–99.CrossRefGoogle Scholar
  2. 2.
    K. Jensen, J. Weldon, H. Garcia, and A. Zettl: Nano Lett., 2007, vol. 7, no. 11, pp. 3508–11.CrossRefGoogle Scholar
  3. 3.
    J. Weldon, K. Jensen, and A. Zettl: Phys. Status Solidi B, 2008, vol. 245, pp. 2323–25.CrossRefGoogle Scholar
  4. 4.
    B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold: Nano Lett., 2008, vol. 8, pp. 3735–8.CrossRefGoogle Scholar
  5. 5.
    K. Jensen, K. Kim, and A. Zettl: Nat. Nanotechnol., 2008, vol. 30, pp. 533–37.CrossRefGoogle Scholar
  6. 6.
    A.K. Httell, M. Poot, B. Witkamp, and H.S.J. van der Zant: New J. Phys., 2008, vol. 10, pp. 095003.CrossRefGoogle Scholar
  7. 7.
    V. Sazonova, Y. Yalsh, H. Üstünel, D. Roundy, T.A. Arlas, and P. McEuen: Nature, 2004, vol. 431, pp. 284–87.CrossRefGoogle Scholar
  8. 8.
    D. Garcia-Sanches, A. San Paulo, M.J. Esplandiu, F. Perez-Murano, L. Forró, A. Aguasca, and A. Bachtold: Phys. Rev. Lett., 2007, vol. 99, pp. 085501.CrossRefGoogle Scholar
  9. 9.
    H.B. Peng, C.W. Chang, S. Aloni, T.D. Yuzvinski, and A. Zettl: Phys. Rev. Lett., 2006, vol. 97, pp. 087203.CrossRefGoogle Scholar
  10. 10.
    B. Witkamp, M. Poot, and H.S.J. van der Zant: Nano Lett., 2006, vol. 6, pp. 2904–29–8.Google Scholar
  11. 11.
    A.K. Hüttel, G.A. Steele, B. Witkamp, M. Poot, L.P. Kouwenhoven, H.S.J. van der Zant: Nano Lett., 2009, vol. 9, pp. 2547–52.CrossRefGoogle Scholar
  12. 12.
    R. Lifshitz and M.L. Roukes: Phys. Rev. B, 2000, vol. 61, pp. 5600–08.CrossRefGoogle Scholar
  13. 13.
    K.L. Ekincia and M.L. Roukes: Rev. Scientif. Instrum., 2005, vol. 76, pp. 061101.CrossRefGoogle Scholar
  14. 14.
    K. Jensen, H.B. Peng, and A. Zettl: Int. Conf. Nanosci. Nanotechnol., IEEE, New York, NY, 2006, pp. 68–71.Google Scholar
  15. 15.
    H. Jiang, M.-F. Yu, B. Liu, and Y. Huang: Phys. Rev. Lett., 2004, vol. 93, p. 185501.CrossRefGoogle Scholar
  16. 16.
    P.A. Greaney and J.C. Grossman: Phys. Rev. Lett., 2007, vol. 98, pp. 125503 ().CrossRefGoogle Scholar
  17. 17.
    S.J. Stuart, A.B. Tutein, and J.A. Harrison: J. Chem. Phys., 2000, vol. 112, pp. 6472–86.CrossRefGoogle Scholar
  18. 18.
    S. Plimpton: J. Computat. Phys., 1995, vol. 117, pp. 1–19. http://lammps.sandia.go.
  19. 19.
    E.B. Mpemba and D.G. Osborne: Phys. Educ., 1969, pp. 172–75.Google Scholar
  20. 20.
    P.A. Greaney, G. Lani, G. Cicero, and J.C. Grossman: Nano Lett., 2009, vol. 9, no. 11, pp. 3699–3703.CrossRefGoogle Scholar
  21. 21.
    M. Jeng: Am. J. Phys., 2006, vol. 74, pp. 514–22.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • P. Alex Greaney
    • 1
  • Giovanna Lani
    • 2
  • Giancarlo Cicero
    • 3
  • Jeffrey C. Grossman
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Laboratoire des Solides Irradis, Ecole PolytechniquePalaiseau cedexFrance
  3. 3.INFM and Physics DepartmentPolytechnic of TorinoTorinoItaly

Personalised recommendations