Metallurgical and Materials Transactions A

, Volume 43, Issue 1, pp 155–162 | Cite as

A New Oxide Morphology Map: Initial Oxidation Behavior of Ni-Base Single-Crystal Superalloys

  • Aya S. Suzuki
  • Kyko Kawagishi
  • Tadaharu Yokokawa
  • Hiroshi Harada
  • Toshiharu Kobayashi


Predictions for oxidation behavior of Ni-base superalloys become more difficult than before because of the complex alloy composition. In this study, we focus on the initial oxidation behavior of Ni-base superalloys, and we suggest a new diagram to predict the initial oxide morphology of Ni-base superalloys with 63 binary, ternary, and multicomponent Ni-base single-crystal superalloys at 1373 K (1100 °C). As a comparison of observed and calculated weight changes after one cycle at 1373 K (1100 °C) obtained by a regression analysis, 63 alloys demonstrated two distinct behaviors, which are divided heretofore into group A and group B. Microstructural observation revealed that an oxide layer in the group A alloys consists of Al2O3 and/or spinel or complex oxide, whereas an oxide layer in the group B alloys consists of a thick NiO layer with an Al2O3 internal subscale. Thermodynamic properties can reflect more effects of alloy elements in Ni-base superalloys, and Al and Cr activities, calculated by Thermo-Calc, were used as factors to predict initial oxidation morphology. Groups A and B alloys can clearly be divided according to Al and Cr activities. This was suggested as a new diagram to predict the initial oxide morphology of Ni-base superalloys, and possibly it can apply for any generation of Ni-base superalloys.


Oxidation Resistance Oxidation Behavior Cyclic Oxidation NiAl2O4 NiCr2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Kawagishi, H. Harada, A. Sato, A. Sato, and T. Kobayashi: JOM, 2006, pp. 43–46.Google Scholar
  2. 2.
    K. Kawagishi, A. Sato, H. Harada, A.C. Yeh, Y. Koizumi, and T. Kobayashi: Mater. Sci. Technol., 2009, vol. 25, no. 2, pp. 271-75.CrossRefGoogle Scholar
  3. 3.
    C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, no. 11, pp. 1782-90.CrossRefGoogle Scholar
  4. 4.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II, 2nd ed., Wiley, New York, NY, 1987, pp. 293-326.Google Scholar
  5. 5.
    G.R. Wallwork and A.Z. Hed: Oxi. Met., 1971, vol. 3, no. 2, pp. 171-84.CrossRefGoogle Scholar
  6. 6.
    C.A. Barrett and C.E. Lowell: Oxi. Met., 1977, vol. 11, no. 4, pp. 199-223.CrossRefGoogle Scholar
  7. 7.
    H. Hindam and D.P. Whittle: Oxi. Met., 1982, vol. 18, nos. 5-6, pp. 245-84.CrossRefGoogle Scholar
  8. 8.
    J.L. Smialek, J.A. Nesbitt, C.A. Barrett, and C.E. Lowell: NASA Report, No. 209768, NASA, Washington, DC, 2000.Google Scholar
  9. 9.
    B.A. Pint, P.F. Tortorelli, and I.G. Wright: Oxi. Met., 2002, vol. 58, nos. 1, 2, pp. 73-101.CrossRefGoogle Scholar
  10. 10.
    C. Wagner: J. Electrochem. Soc., 1952, vol. 99, pp. 369-80.CrossRefGoogle Scholar
  11. 11.
    T.J. Nijdam and W.G. Sloof: Acta Mater., 2008, vol. 56, pp. 4972-83.CrossRefGoogle Scholar
  12. 12.
    T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof: Acta Mater., 2003, vol. 51, pp. 5295-5307.CrossRefGoogle Scholar
  13. 13.
    T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof: Acta Mater., 2005, vol. 53, pp. 1643-53.CrossRefGoogle Scholar
  14. 14.
    G. Wahl: Thin Solid Films, 1983, vol. 107, pp. 417-26.CrossRefGoogle Scholar
  15. 15.
    A. Sato, Y.-L. Chiu, and R.C. Reed: Acta Mater., 2011, vol. 59, pp. 225-40.CrossRefGoogle Scholar
  16. 16.
    H. Harada, K. Ohno, T. Yamagata, T. Yokokawa, and M. Yamazaki: Superalloys 1988, TMS, Champion, PA, 1988, pp. 733-42.Google Scholar
  17. 17.
    S. Walston, A. Cetal, R. Mackay, K. O’Hara, D. Duhl, and R. Dreshfield: Superalloys 2004, TMS, Champion, PA, 2004, pp. 15-24.Google Scholar
  18. 18.
    M. Osawa and H. Harada: Proc. of High Temperature Materials 2001, NIMS, Tsukuba, Japan, 2001, pp. 14–15.Google Scholar
  19. 19.
    T. Yokokawa, M. Osawa, K. Tanaka, T. Kobayashi, and H. Harada: Proc. of 2000 JIM Spring meeting, Yokohama, Japan, 2000, p. 295.Google Scholar
  20. 20.
    A. Sato, H. Harada, A.C. Yeh, K. Kawagishi, Y. Koizumi, T. Yokokawa, and J.X. Zhang: Superalloys 2008, TMS, Champion, PA, 2008, pp. 131-38.Google Scholar
  21. 21.
    Thermo-Calc Software: Thermo-Calc,
  22. 22.
    A.S. Suzuki, K. Kawagishi, T. Yokokawa, H. Harada, and T. Kobayashi: Scripta Mater., 2011, vol. 65, pp. 49-52.CrossRefGoogle Scholar
  23. 23.
    K. Pruessner and H. Harada: J. Electrochem. Soc., 2010, vol. 57, no. 11, pp. 95-98.CrossRefGoogle Scholar
  24. 24.
    A. Akhtar, M.S. Hook, and R.C. Reed: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3001-17.CrossRefGoogle Scholar
  25. 25.
    K. Kawagishi, A. Sato, A. Sato, T. Kobayashi, and H. Harada: Mater. Sci. Forum., 2006, vols. 522–523, pp. 317-22.CrossRefGoogle Scholar
  26. 26.
    K. Kawagishi, A. Sato, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2007, vol. 71, no. 3, pp. 313-19.CrossRefGoogle Scholar
  27. 27.
    R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga: Superalloys 2004, TMS, Champion, PA, 2004, pp. 53-62.Google Scholar
  28. 28.
    T. Yokokawa, M. Osawa, K. Nishida, T. Kobayashi, Y. Koizumi, and H. Harada: Scripta Mater., 2003, vol. 49, pp. 1041-46.CrossRefGoogle Scholar
  29. 29.
    F.H. Stott, G.C. Wood, D.P. Whittle, B.D. Bastow, Y. Shida, and A. Martinez-Villafane: Solid State Ion., 1984, vol. 12, pp. 365-74.CrossRefGoogle Scholar
  30. 30.
    F.H. Stott, Y. Shida, D.P. Whittle, G.C. Wood, and B.D. Bastow: Oxi. Met., 1982, vol. 18, pp. 127-46.CrossRefGoogle Scholar
  31. 31.
    F.H. Stott, G.C. Wood, Y. Shida, D.P. Whittle, and B.D. Bastow: Corrosion Sci., 1981, vol. 21, pp. 599-624.CrossRefGoogle Scholar
  32. 32.
    N. Birks and G.H. Meier: Introduction to High Temperature Oxidation of Metals, 1st ed., Edward Arnold, London, UK, 1983, pp. 91-130.Google Scholar
  33. 33.
    L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184-201.Google Scholar
  34. 34.
    G.S. Hartley and J. Crank: Trans. Faraday Soc., 1949, vol. 45, no. 9, pp. 801-18.CrossRefGoogle Scholar
  35. 35.
    I.M. Edmonds, H.E. Evans, C.N. Jones, and B.W. Broomfield: Oxi. Met., 2008, vol. 69, nos. 1-2, pp. 95-108.CrossRefGoogle Scholar
  36. 36.
    K. Kawagishi, A. Sato, T. Kobayashi, and H. Harada: J. Jpn. Inst. Met., 2006, vol. 70, no. 8, pp. 686-89.CrossRefGoogle Scholar
  37. 37.
    I.M. Edmonds, H.E. Evance, C.N. Jones, and R.W. Broomfield: Mater. Sci. Forum., 2008, vols. 595-8, pp. 59-67.CrossRefGoogle Scholar
  38. 38.
    R.A. Hobbs, L. Zhang, C.M.F. Rae, and S. Tin: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1014-25.CrossRefGoogle Scholar
  39. 39.
    A.C. Yeh, C.M.F. Rae, and S. Tin: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 677-86.Google Scholar
  40. 40.
    S. Bose: High Temperature Coatings, Butterworth-Heinemann, Burlington, MA, 2007, pp. 29-52.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Aya S. Suzuki
    • 1
  • Kyko Kawagishi
    • 1
  • Tadaharu Yokokawa
    • 1
  • Hiroshi Harada
    • 1
  • Toshiharu Kobayashi
    • 1
  1. 1.High Temperature Materials CenterNational Institute for Materials ScienceIbaragiJapan

Personalised recommendations