Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 9, pp 2527–2529 | Cite as

Study on Raman Spectroscopy and Purification of B-C-N Compound

  • Dongxu LiEmail author
  • Jing Lu
  • Dongli Yu
  • Yongjun Tian
Communication

Abstract

Electrophoretic technology is used to purify BC3.3N in an amorphous carbon and hexagonal boron nitride sample. The results are acquired using Raman spectroscopy and field emission scanning electron microcopy with energy dispersive spectroscopy, which show that pure BC3.3N is obtained from graphite and hexagonal boron nitride. The structural characteristics of this compound are studied by Fourier transform infrared spectroscopy. A simple method for purifying B-C-N compounds is presented.

Keywords

Raman Spectroscopy Field Emission Scanning Electron Microscopy Energy Dispersive Spectroscopy Amorphous Carbon Hexagonal Boron Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

The authors acknowledge financial support from Huaqiao University (grants 09BS503 and 10BS112) and MMST (grants 201102).

References

  1. 1.
    A.Y. Liu, R.M. Wentzcovitch, and M.L. Cohen: Phys. Rev. B, 1989, vol. 39, pp. 1760–65.CrossRefGoogle Scholar
  2. 2.
    V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie: Appl. Phys. Lett., 2001, vol. 78, pp. 1385–87.CrossRefGoogle Scholar
  3. 3.
    Y. Zhao, D.W. He, L.L. Daemen, T.D. Shen, R.B. Schwarz, Y. Zhu, D.L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T.W. Zerda: J. Mater. Res., 2002, vol. 17, pp. 3139–45.CrossRefGoogle Scholar
  4. 4.
    X.G. Luo, X.J. Guo, Z.Y. Liu, J.L. He, D.L. Yu, B. Xu, H.T. Wang, and Y.J. Tian: J. Appl. Phys., 2009, vol. 105, pp. 043509.CrossRefGoogle Scholar
  5. 5.
    S. Kumar, N. Kamaraju, K.S. Vasu, A. Nag, A.K. Sood, and C.N.R. Rao: Chem. Phys. Lett., 2010, vol. 499, pp. 152-57.CrossRefGoogle Scholar
  6. 6.
    M.A. Mannan, M. Nagano, T. Kida, N. Hirao, and Y. Baba: J. Phys. Chem. Solids, 2009, vol. 70, pp. 20–25.CrossRefGoogle Scholar
  7. 7.
    K. Raidongia, Kpss. Hembram, U.V. Waghmare, M. Eswaramoorthy, and C.N.R. Rao: Z. Anorg. Allg. Chem., 2010, vol. 636, pp. 30–35.Google Scholar
  8. 8.
    J.L. He, Y.J. Tian, D.L. Yu, T.S. Wang, S.M. Liu, L.C. Guo, D.C. Li, X.P. Jia, L.X. Chen, G.T. Zou, and O. Yanagisawa: Chem. Phys. Lett., 2001, vol. 340, pp. 431–36.CrossRefGoogle Scholar
  9. 9.
    S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka: Chem. Mater., 1994, vol. 6, pp. 2246–51.CrossRefGoogle Scholar
  10. 10.
    T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, and T. Oikawa: Chem. Mater., 1993, vol. 5, pp. 695–99.CrossRefGoogle Scholar
  11. 11.
    Y.H. Wang, Q.Z. Chen, J. Cho, and A.R. Boccaccini: Surf. Coat. Technol., 2007, vol. 201, pp. 7645–51.CrossRefGoogle Scholar
  12. 12.
    D.X. Li, D.L. Yu, B. Xu, J.L. He, Z.Y. Liu, P. Wang, and Y.J. Tian: Cryst. Growth Des., 2008, vol. 8, pp. 2096–2100.CrossRefGoogle Scholar
  13. 13.
    Y. Kobayashi and T. Akasaka: J. Cryst. Growth, 2008, vol. 310, pp. 5044–47.CrossRefGoogle Scholar
  14. 14.
    V. Pokropivny, S. Kovrygin, V. Gubanov, R. Lohmus, A. Lohmus, and U. Vesi: Physica E, 2008, vol. 40, pp. 2339–42.CrossRefGoogle Scholar
  15. 15.
    M. Ben el Mekki, M.A. Djouadi, E. Guiot, V. Mortet, J. Pascallon, V. Stambouli, D. Bouchier, N. Mestres, and G. Nouet: Surf. Coat. Tech., 1999, vols. 116–119, pp. 93–99.Google Scholar
  16. 16.
    F. Tuinstra and J.L. Koenig: J. Chem. Phys., 1970, vol. 53, pp. 1126–30.CrossRefGoogle Scholar
  17. 17.
    R.J. Nemanich and S.A. Solin: Phys. Rev. B, 1979, vol. 20, pp. 392–401.CrossRefGoogle Scholar
  18. 18.
    Y.K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki: Appl. Phys. Lett., 2002, vol. 80, pp. 2559–61.CrossRefGoogle Scholar
  19. 19.
    J. Yu, J. Ahn, S.F. Yoon, Q. Zhang, Rusli, B. Gan, K. Chew, M.B. Yu, X.D. Bai, and E.G. Wang: Appl. Phys. Lett., 2000, vol. 77, pp. 1949–51.Google Scholar
  20. 20.
    C.Y. Zhi, X.D. Bai, and E.G. Wang: Appl. Phys. Lett., 2002, vol. 80, pp. 3590–92.CrossRefGoogle Scholar
  21. 21.
    C.Y. Zhi, X.D. Bai, and E.G. Wang: Appl. Phys. Lett., 2004, vol. 84, pp. 1549–51.CrossRefGoogle Scholar
  22. 22.
    S.Z. Bai, B. Yao, B.K. Huang, S.J. Zhang, Z.H. Ding, X.Y. Guo, X.D. Zhou, and W.H. Su: Chem. J. Chinese U., 2005, vol. 26, pp. 811–15.Google Scholar
  23. 23.
    A.R. Phani: Bull. Mater. Sci., 1994, vol. 17, pp. 219–24.CrossRefGoogle Scholar
  24. 24.
    Z.F. Zhou, I. Bello, M.K. Lei, K.Y. Li, C.S. Lee, and S.T. Lee: Surf. Coat. Technol., 2000, vols. 128–129, pp. 334–40.Google Scholar
  25. 25.
    Y.M. Chen, Z.X. Zeng, S.R. Yang, and J.Y. Zhang: Diamond Relat. Mater., 2009, vol. 18, pp. 20–26.CrossRefGoogle Scholar
  26. 26.
    H.S. Kim, I.H. Choi, and Y.J. Baik: Surf. Coat. Technol., 2000, vols. 133-134, pp. 473–77.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHuaqiao UniversityXiamenPR China
  2. 2.College of Mechanical Engineering and AutomationHuaqiao UniversityXiamenPR China
  3. 3.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPR China

Personalised recommendations