Metallurgical and Materials Transactions A

, Volume 43, Issue 1, pp 281–293 | Cite as

Interfacial Microstructure in a B4C/Al Composite Fabricated by Pressureless Infiltration

  • Zhiping Luo
  • Yinggang Song
  • Shaoqing Zhang
  • Dean J. Miller


In this work, B4C particulate-reinforced Al composite was fabricated by a pressureless infiltration technique, and its interfacial microstructure was studied in detail by X-ray diffraction as well as by scanning and transmission electron microscopy. The B4C phase was unstable in Al melt during the infiltration process, forming AlB10-type AlB24C4 or Al2.1B51C8 as a major reactant phase. The Al matrix was large grains (over 10 μm), which had no definite orientation relationships (ORs) with the randomly orientated B4C or its reactant particles, except for possible nucleation sites with \( \{ 011\}_{{{\text{B}}_{4} {\text{C}}}} \) almost parallel to {111}Al at a deviation angle of 1.5 deg. Both B4C–Al and reactant–Al interfaces are semicoherent and free of other phases. A comparison was made with the SiC/Al composite fabricated similarly by the pressureless infiltration. It was suggested that the lack of ORs between the Al matrix and reinforced particles, except for possible nucleation sites, is the common feature of the composites prepared by the infiltration method.


MgAl2O4 SAED Pattern Spinel MgAl2O4 Reciprocal Lattice Point Pressureless Infiltration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This sample fabrication was supported by the National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials. Some modeling and simulations were performed using Cerius2 program, provided by Dr. Lisa M. Pérez through the Laboratory for Molecular Simulation, Department of Chemistry, Texas A&M University. Some of the work was carried out in the Electron Microscopy Center, Argonne National Laboratory, which is supported by the U.S. Department of Energy under contract W-31-109-Eng-38. The authors thank Dr. Mike Pendleton (MIC, TAMU) for assistance in the manuscript preparation.

Supplementary material

11661_2011_817_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1503 kb)


  1. 1.
    M. Bouchacourt and F. Thevenot: J. Less Common. Met., 1981, vol. 82, pp. 227-35.CrossRefGoogle Scholar
  2. 2.
    F. Thévenot: J. Eur. Ceram. Soc., 1990, vol. 6, pp. 205-25.CrossRefGoogle Scholar
  3. 3.
    A.J. Pyzik and D.R. Beaman: J. Am. Ceram. Soc., 1995, vol. 78, pp. 305-12.CrossRefGoogle Scholar
  4. 4.
    T.R. Chapman, D.E. Niesz, R.T. Fox, and T. Fawcett: Wear, 1999, vol. 236, pp. 81-87.CrossRefGoogle Scholar
  5. 5.
    Y.G. Tkachenko, M.S. Koval’chenko, V.F. Britun, G.A. Bovkun, D.Z. Yurchenko, A.V. Laptev, and L.P. Isaeva: Powder Metall. Met. Ceram., 2009, vol. 48, pp. 60-65.CrossRefGoogle Scholar
  6. 6.
    A. Canakci: J. Mater. Sci., 2011, vol. 46, pp. 2805-13.CrossRefGoogle Scholar
  7. 7.
    M.K. Aghajanian, J.T. Burke, D.R. White, and A.S. Nagelberg: SAMPE Quarterly, 1989, vol. 20, pp. 43-46.Google Scholar
  8. 8.
    M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck: J. Mater. Sci., 1991, vol. 26, pp. 447-54.CrossRefGoogle Scholar
  9. 9.
    J.C. Lee, H.I. Lee, J.P. Ahn, Z. Shi, and Y. Kim: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2361-68.CrossRefGoogle Scholar
  10. 10.
    J.C. Lee, J.P. Ahn, Z. Shi, J.H. Shim, and H.I. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1541-50.CrossRefGoogle Scholar
  11. 11.
    Z.P. Luo, Y.G. Song, and S.Q. Zhang: Scripta Mater., 2001, vol. 45, pp. 1183-89.CrossRefGoogle Scholar
  12. 12.
    J.H. Jeong, Y. Kim, and J.C. Lee: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1361-69.CrossRefGoogle Scholar
  13. 13.
    Z.P. Luo: Acta Mater., 2006, vol. 54, pp. 47-58.CrossRefGoogle Scholar
  14. 14.
    B. Xiong, Z. Xu, Q. Yan, B. Lu, and C. Cai: J. Alloys Compd., 2011, vol. 509, pp. 1187-91.CrossRefGoogle Scholar
  15. 15.
    J.C. Viala, J. Bouix, G. Gonzalez, and C. Esnouf: J. Mater. Sci., 1997, vol. 32, pp. 4559-73.CrossRefGoogle Scholar
  16. 16.
    K.B. Lee, H.S. Sim, S.Y. Cho, and H. Kwon: Mater. Sci. Eng. A, 2001, vol. 302A, pp. 227-34.Google Scholar
  17. 17.
    B.S. Lee and S. Kang: Mater. Chem. Phys., 2001, vol. 67, pp. 249-55.CrossRefGoogle Scholar
  18. 18.
    F.C. Sahin, O. Ozdemir, and O. Yucel: Key Eng. Mater., 2002, vols. 206-16, pp. 1045-48.CrossRefGoogle Scholar
  19. 19.
    G. Arslan, F. Kara, and S. Turan: J. Eur. Ceram. Soc., 2003, vol. 23, pp. 1243-55.CrossRefGoogle Scholar
  20. 20.
    G. Arslan and A. Kalemtas: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 473-80.CrossRefGoogle Scholar
  21. 21.
    R.T. Fox, R.A. Newman, A.J. Pyzik, and C. Han: Int. J. Appl. Ceram. Tech., 2010, vol. 7, pp. 837-45.CrossRefGoogle Scholar
  22. 22.
    H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, and S.R. Nutt: Mater. Sci. Eng. A, 2001, vol. 297A, pp. 94-104.Google Scholar
  23. 23.
    M. Kouzeli, C.S. Marchi, and A. Mortensen: Mater. Sci. Eng. A, 2002, vol. 337A, pp. 264-73.Google Scholar
  24. 24.
    D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1-23.Google Scholar
  25. 25.
    J.M. Howe: Interfaces in Materials, Wiley, New York, NY, 1997, pp. 295-481.Google Scholar
  26. 26.
    Y. Ikuhara and P. Pirouz: Microsc. Res. Tech., 1998, vol. 40, pp. 206-41.CrossRefGoogle Scholar
  27. 27.
    Z.P. Luo and C.Y. Sun: Mater. Charact. 2003, vol. 50, pp. 51-58.CrossRefGoogle Scholar
  28. 28.
    J. Ye, B.Q. Han, and J.M. Schoenung: Philos. Mag. Lett., 2006, vol. 86, pp. 721-32.CrossRefGoogle Scholar
  29. 29.
    P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., vol. 2, ASM, Materials Park, OH, 1991, p. 897.Google Scholar
  30. 30.
    G. Will: Acta Cryst., 1967, vol. 23, pp. 1071-79.CrossRefGoogle Scholar
  31. 31.
    G. Will: Acta Cryst. B, 1969, vol. 25B, pp. 1219-22.CrossRefGoogle Scholar
  32. 32.
    A.J. Perrotta, W.D. Townes, and J.A. Potenza: Acta Cryst. B, 1969, vol. 25B, pp. 1223-29.CrossRefGoogle Scholar
  33. 33.
    I. Higashi, T. Sakurai, and T. Atoda: J. Solid State Chem., 1977, vol. 20, pp. 67-77.CrossRefGoogle Scholar
  34. 34.
    J.S. Kasper, M. Vlasse, and R. Naslain: J. Solid State Chem., 1977, vol. 20, pp. 281-85.CrossRefGoogle Scholar
  35. 35.
    V.I. Matkovich, R.F. Giese Jr., and J. Economy: Z. Kristall., 1965, vol. 122, pp. 108-15.CrossRefGoogle Scholar
  36. 36.
    I. Higashi: J. Solid State Chem., 2000, vol. 154, pp. 168-76.CrossRefGoogle Scholar
  37. 37.
    F. D. Meyer and H. Hillebrecht: J. Alloys Compd., 1997, vol. 252, pp. 98-102.CrossRefGoogle Scholar
  38. 38.
    G.A. Jeffrey and V.Y. Wu: Acta Cryst., 1966, vol. 20, pp. 538-47.CrossRefGoogle Scholar
  39. 39.
    H.L. Yakel: Acta Cryst. B, 1975, vol. 31B, pp. 1797-1806.CrossRefGoogle Scholar
  40. 40.
    Z.P. Luo and J.H. Koo: J. Microsc., 2007, vol. 225, pp. 118-25.CrossRefGoogle Scholar
  41. 41.
    Z.P. Luo: J. Mater. Sci., 2010, vol. 45, pp. 3228-41.CrossRefGoogle Scholar
  42. 42.
    D.B. Willims and C.B. Carter: Transmission Electron Microscopy, Spectrometry, vol. 4, Plenum Press, New York, NY, 1996, pp. 580-82.Google Scholar
  43. 43.
    K.B. Lee, H.S. Sim, S.Y. Cho, and H. Kwon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2142-47.CrossRefGoogle Scholar
  44. 44.
    Z. Zhang, X.G. Chen, and A. Charette: J. Mater. Sci., 2007, vol. 42, pp. 7354-62.CrossRefGoogle Scholar
  45. 45.
    C. Nie, J. Gu, J. Liu, and D. Zhang: J. Alloys Compd., 2008, vol. 454, pp. 118-22.CrossRefGoogle Scholar
  46. 46.
    X.G. Chen, M. da Silva, P. Gougeon, and L. St-Georges: Mater. Sci. Eng. A, 2009, vol. 518A, pp. 174-84.Google Scholar
  47. 47.
    Z. Zhang, X.G. Chen, and A. Charette: J. Mater. Sci. 2009, vol. 44, pp. 492-501.CrossRefGoogle Scholar
  48. 48.
    Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2010, vol. 58, pp. 1732-40.CrossRefGoogle Scholar
  49. 49.
    M. Kubota: J. Alloys Compd., 2010, vol. 504S, pp. S319-322.CrossRefGoogle Scholar
  50. 50.
    Z. Zhang, K. Fortin, A. Charette, and X.G. Chen: J. Mater. Sci., 2011, vol. 46, pp. 3176-85.CrossRefGoogle Scholar
  51. 51.
    J. Ye, J. He, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3099-3109.CrossRefGoogle Scholar
  52. 52.
    J. Ye, Z. Lee, B. Ahn, J. He, S.R. Nutt, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3111-17.CrossRefGoogle Scholar
  53. 53.
    Z. Zhang, S. Dallek, R. Vogt, Y. Li, T.D. Topping, Y. Zhou, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans., 2010, vol. 41A, pp. 532-41.CrossRefGoogle Scholar
  54. 54.
    R. Vintila, A. Charest, R.A.L. Drew, and M. Brochu: Mater. Sci. Eng. A, 2011, vol. 528A, pp. 4395-407.Google Scholar
  55. 55.
    Y. Ikuhara and P. Pirouz: Mater. Sci. Forum, 1996, vols. 207-9, pp. 121-24.CrossRefGoogle Scholar
  56. 56.
    R. Schweinfest, S. Köstlmeier, F. Ernst, C. Elsässer, T. Wagner, and M.W. Finnis: Phil. Mag. A, 2001, vol. 81A, pp. 927-55.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Zhiping Luo
    • 1
  • Yinggang Song
    • 2
  • Shaoqing Zhang
    • 2
  • Dean J. Miller
    • 3
  1. 1.Microscopy and Imaging Center and the Materials Science and Engineering ProgramTexas A&M UniversityCollege StationUSA
  2. 2.Beijing Institute of Aeronautical MaterialsBeijingP.R. China
  3. 3.Electron Microscopy Center, Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations