Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 13, pp 4113–4125 | Cite as

Investigation of Prism 〈a〉 Slip in Warm-Rolled AZ31 Alloy

  • Y. B. Chun
  • C. H. J. Davies
Article

Abstract

Based on analysis of texture and in-grain misorientation axes (IGMA) distribution, we investigate the effects of initial orientation and deformation temperature on the rollability of magnesium alloy AZ31 and the associated deformation mechanisms. Plate samples oriented favorably for basal 〈a〉 slip exhibited the best rollability at room temperature, whereas under the warm-rolling condition, surprisingly, the plate oriented for prism 〈a〉 slip exhibited the best rollability. The enhanced rollability of the latter plate is attributed to increased activity of prism 〈a〉 slip, which exhibits a lower texture hardening rate than basal 〈a〉 slip. The increased activity of prism 〈a〉 slip is shown experimentally by the development of the \( \langle 10\bar{1}0 \rangle \)//RD texture and 〈0001〉-type IGMA distribution. Asymmetric texture is also suggested to impair the rollability of plate oriented for basal 〈a〉 slip.

Keywords

AZ31 Alloy Critical Resolve Shear Stress Orientation Group Slip Mode Warm Rolling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the Australian Research Council for the funding of the Centre of Excellence for Design in Light Metals. The authors also acknowledge the Monash Centre for Electron Microscopy (MCEM) for providing access to experimental facilities.

References

  1. 1.
    C.S. Roberts: Magnesium and Its Alloys, Wiley, New York, NY, 1960, pp. 226–63.Google Scholar
  2. 2.
    M.M. Avedesian and H. Baker: Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM INTERNATIONAL, Metals Park, OH, 1999, pp. 154–55.Google Scholar
  3. 3.
    C.J. Bettles and M.A. Gibson: JOM, 2005, vol. 57, pp. 46–49.CrossRefGoogle Scholar
  4. 4.
    H.K. Lim, D.H. Kim, J.Y. Lee, J.S. Kyeong, W.T. Kim, and D.H. Kim: Met. Mater. Int., 2009, vol. 15, pp. 337–43.CrossRefGoogle Scholar
  5. 5.
    A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1339–49.CrossRefGoogle Scholar
  6. 6.
    E.W. Kelly and W.F. Hosford: Trans. AIME, 1968, vol. 242, pp. 5–13.Google Scholar
  7. 7.
    P. Ward Flynn, J.D. Mote, and J.E. Dorn: Trans. AIME, 1961, vol. 221, pp. 1148–54.Google Scholar
  8. 8.
    R.M. Quimby, J.D. Mote, and J.E. Dorn: Trans. ASM, 1962, vol. 55, 149–57.Google Scholar
  9. 9.
    R.E. Reed-Hill and W.D. Robertson: Trans. AIME, 1957, vol. 220, pp. 496–502.Google Scholar
  10. 10.
    A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1351–56.CrossRefGoogle Scholar
  11. 11.
    J. Koike: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1689–96.CrossRefGoogle Scholar
  12. 12.
    J. Koike and R. Ohyama: Acta Mater., 2005, vol. 53, pp. 1963–72.CrossRefGoogle Scholar
  13. 13.
    A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1447–54.CrossRefGoogle Scholar
  14. 14.
    J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, pp. 1313–29.CrossRefGoogle Scholar
  15. 15.
    T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.CrossRefGoogle Scholar
  16. 16.
    S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRefGoogle Scholar
  17. 17.
    M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 813–22.Google Scholar
  18. 18.
    S. Ando, N. Harada, M. Tsushida, H. Kitahara, and H. Tonda: Key Eng. Mater., 2007, vols. 345–346, pp. 101–04.Google Scholar
  19. 19.
    S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.Google Scholar
  20. 20.
    S.R. Agnew and Ö. Duygulu: Int. J. Plasticity, 2005, vol. 21, pp. 1161–93.CrossRefGoogle Scholar
  21. 21.
    R. Gehrmann, M.M. Frommert, and G. Gottstein: Mater. Sci. Eng. A, 2005, vol. 375, pp. 338–49.Google Scholar
  22. 22.
    T. Al-Samman and G. Gottstein: Mater. Sci. Eng. A, 2008, vol. 488, pp. 406–14.CrossRefGoogle Scholar
  23. 23.
    A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462, pp. 29–36.CrossRefGoogle Scholar
  24. 24.
    A. Urakami, M. Meshii, and M.E. Fine: Acta Metall., 1970, vol. 18, pp. 87–99.CrossRefGoogle Scholar
  25. 25.
    Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3473–87.CrossRefGoogle Scholar
  26. 26.
    E.J. Rapperport and C.S. Hartley: Trans. AIME, 1960, vol. 218, pp. 869–77.Google Scholar
  27. 27.
    P. Bastien and P. Pointu: J. Nucl. Mater., 1962, vol. 5, pp. 101–08.CrossRefGoogle Scholar
  28. 28.
    W. Taylor and A. Moore: J. Nucl. Mater., 1964, vol. 13, pp. 23–27.CrossRefGoogle Scholar
  29. 29.
    M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.CrossRefGoogle Scholar
  30. 30.
    N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Acta Metall. Mater., 1994, vol. 42, pp. 475–87.CrossRefGoogle Scholar
  31. 31.
    H. Mughrabi: Acta Mater., 2006, vol. 54, pp. 3417–27.CrossRefGoogle Scholar
  32. 32.
    R. von Mises: J. Appl. Math. Mech., 1928, vol. 8, pp. 161–85.Google Scholar
  33. 33.
    U.F. Kocks and H. Chandra: Acta Metall., 1982, vol. 30, pp. 695–709.CrossRefGoogle Scholar
  34. 34.
    M. Battaini, E.V. Pereloma, and C.H.J. Davies: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 276–85.CrossRefGoogle Scholar
  35. 35.
    M.D. Nave and M.R. Barnett: Scripta Mater., 2004, vol. 51, pp. 881–85.CrossRefGoogle Scholar
  36. 36.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.CrossRefGoogle Scholar
  37. 37.
    F. Wagner, N. Bozzolo, O.V. Landuyt, and T. Grosdidier: Acta Mater., 2002, vol. 50, pp. 1245–59.CrossRefGoogle Scholar
  38. 38.
    E. Tenckhoff: Metall. Trans. A, 1978, vol. 9A, pp. 1401–12.Google Scholar
  39. 39.
    P.G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–94.Google Scholar
  40. 40.
    I. Saxl and I. Haslingerova: Czech. J. Phys. B, 1974, vol. 24, pp. 1351–61.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash UniversityVictoriaAustralia

Personalised recommendations