Microstructural Characterization of the White Etching Layer in Nickel-Based Superalloy

  • A. M. Wusatowska-SarnekEmail author
  • B. Dubiel
  • A. Czyrska-Filemonowicz
  • P. R. Bhowal
  • N. Ben Salah
  • J. E. Klemberg-Sapieha


Microstructural characterization of the white etching layer (WEL) formed during milling in a fine-grained IN100 Ni-based superalloy was conducted. The microstructure of the layer depended on milling parameters, and under typical machining conditions, where moderate surface speed was used, the white layer exhibited nanostructure character. Fast surface speed produced partial amorphization of the outermost layer. Limited notched low cycle fatigue (LCF) testing was performed, and it was demonstrated that the fatigue properties deteriorated significantly in the specimens where WEL was present in the notch-root surface.


Milling Select Area Electron Diffraction Pattern White Layer Notch Root Uncut Chip Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support from Pratt & Whitney in conducting this work, Mr. Michael W. Fox (Pratt & Whitney) for various phases of metallographic evaluation, Mrs. Krystyna Plonska-Niznik (AGH-UST) as well as Dr. Heinz-Josef Penkalla and Mrs. Daniela Esser (Forschungszentrum Jülich) for thin foil preparation, Dr. Aleksandre Vasiliev (Institute of Crystallography, Russian Academy of Sciences) for EELS analysis, and Mr. Édouard Proust (École Polytechnique de Montréal) for the nanoindentation measurements. The stimulating discussions with Professor Roman Wusatowski are greatly acknowledged.


  1. 1.
    E.O. Ezugwu, J. Bonney, and Y. Yamane: J. Mater. Process. Technol., 2003, vol. 134, pp. 233–53.CrossRefGoogle Scholar
  2. 2.
    L.N. Lopez deLacalle, J. Perez, J.L. Llorente, and J.A. Sanchez: J. Mater. Process. Technol., 2000, vol. 100, pp. 1–11.CrossRefGoogle Scholar
  3. 3.
    I.A. Choudhury and M.A. El-Baradie J. Mater. Process. Technol., 1998, vol. 77, pp. 278–84.CrossRefGoogle Scholar
  4. 4.
    B. Griffiths: J. Tribol., 1987, vol. 109, pp. 525–32.CrossRefGoogle Scholar
  5. 5.
    S. Lee, J. Hwang, M.R. Shankar, S. Chandrasekar, and W.D. Compton: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1633–43.CrossRefGoogle Scholar
  6. 6.
    S. Swaminathan, M.R. Shankar, B.C. Rao, W.D. Compton, S. Chandrasekar, A.H. King, and K.P. Trumble: J. Mater. Sci., 2007, vol. 42, pp. 1529–41.CrossRefGoogle Scholar
  7. 7.
    Y. Guo and J. Sahni: Int. J. Mach. Tools Manuf., 2004, vol. 44, pp. 135–43.CrossRefGoogle Scholar
  8. 8.
    J. Barry and G. Byrne: Mater. Sci. Eng., 2002, vol. A325, pp. 356–61.Google Scholar
  9. 9.
    A. Ramesh, S.N. Melkote, L.F. Allard, L. Riester, and T.R. Watkins: Mater. Sci. Eng., 2005, vol. A390, pp. 88–101.Google Scholar
  10. 10.
    W. Öesterle, H. Rooch, A. Pyzalla, and L. Wang: Mater. Sci. Eng., 2001, vol. A303, pp. 150–57.Google Scholar
  11. 11.
    A. Baumann, H.J. Fecht, and S. Liebelt: Wear, 1996, vol. 191, pp. 133–40.CrossRefGoogle Scholar
  12. 12.
    E.O. Ezugwu, Z.M. Wang, and A.R. Machado: J. Mater. Process. Technol., 1999, vol. 86, pp. 1–16.CrossRefGoogle Scholar
  13. 13.
    W. Österle and P.X. Li: Mater. Sci. Eng., 1997, vol. A238, pp. 357–66.Google Scholar
  14. 14.
    T. Connolley, M.J. Starink, and P.A.S. Reed: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 771–85.CrossRefGoogle Scholar
  15. 15.
    A.W. Wusatowska-Sarnek, G. Ghosh, G.B. Olson, M.J. Blackburn, and M. Aindow: J. Mater. Res., 2003, vol. 18, pp. 2653–63.CrossRefGoogle Scholar
  16. 16.
    H.J. Penkalla: Proc. 1st St. Gorczyca Summer School on Advanced Transmission Electron Microscopy, 3.06-5.07.2003, Krakow, Poland, A. Czyrska-Filemonowicz and B. Dubiel, eds., Akapit, Krakow, 2003, pp. 4–23.Google Scholar
  17. 17.
    P. Stadelmann: JEMS Java Electron Microscopy Software, available from
  18. 18.
    “Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method,” International Standard ISO 14577-1, 2002.Google Scholar
  19. 19.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–70.CrossRefGoogle Scholar
  20. 20.
    T.H.C. Childs, K. Maekawa, T. Obikawa, and Y. Yamane: Metal Machining Theory and Applications, Elsevier, New York, NY, 2000, pp. 35–80.Google Scholar
  21. 21.
    I. Lazoglu and Y. Altintas: Mach. Tools Manuf., 2002, vol. 42, pp. 1011–22.CrossRefGoogle Scholar
  22. 22.
    S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, E.V. Tatyanin, and I.B. Trubitsyna: Mater. Sci. Forum, 2006, vols. 503–504, pp. 481–86.CrossRefGoogle Scholar
  23. 23.
    S. Akcan, S. Shah, S.P. Moylan, P.N. Chhabra, S. Chandrasekar, and H.T.Y. Yang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1245–54.CrossRefGoogle Scholar
  24. 24.
    M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, and Q. Xue: Mater. Sci. Eng., 2001, vol. A317, pp. 204–25.Google Scholar
  25. 25.
    A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers: Acta Mater., 2007, vol. 55, pp. 13–28.CrossRefGoogle Scholar
  26. 26.
    A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki: Phil. Mag., 2001, vol. 81, pp. 2629–2743.Google Scholar
  27. 27.
    S. Kikuchi, S. Ando, S. Futami, T. Kitamura, and M. Koiwa: J. Mater. Sci., 1990, vol. 25, pp. 4712–16.CrossRefGoogle Scholar
  28. 28.
    M.C. Shaw: Metal Cutting Principles, 2nd ed., Oxford University Press, Oxford, United Kingdom, 2005, pp. 377–78.Google Scholar
  29. 29.
    M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelly: Acta Mater., 2003, vol. 51, pp. 1307–25.CrossRefGoogle Scholar
  30. 30.
    A.M. Wusatowska-Sarnek: J. Eng. Mater. Technol., 2005, vol. 127, pp. 295–300.CrossRefGoogle Scholar
  31. 31.
    A. Latapie and D. Farkas: Scripta Mater., 2003, vol. 48, pp. 611–15.CrossRefGoogle Scholar
  32. 32.
    H. Van Swygenhofen, M. Spaczer, and A. Caro: Acta Mater., 1999, vol. 47, pp. 3117–26.CrossRefGoogle Scholar
  33. 33.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067–4109.CrossRefGoogle Scholar
  34. 34.
    S. Zao, K. Albe, and H. Hahn: Scripta Mater., 2006, vol. 55, pp. 473–81.CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo: Z. Metallkd., 2003, vol. 94, pp. 1157–61.Google Scholar
  36. 36.
    A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng., 2002, vol. A323, pp. 177–86.Google Scholar
  37. 37.
    M. Fahrmann, W. Hermann, E. Fahrmann, A. Boegli, T.M. Pollock, and H.G. Sockel: Mater. Sci. Eng., 1999, vol. A260, pp. 212–21.Google Scholar
  38. 38.
    N. Ben-Salah: private communication, 2009.Google Scholar
  39. 39.
    H. Mughrabi and H.W. Höppel: Int. J. Fatigue, 2010, vol. 32, pp. 1413–27.CrossRefGoogle Scholar
  40. 40.
    S. Cheng, A.D. Stoica, A.D.X.-L. Wang, G.Y. Wang, H. Choo, and P.K. Liaw: Scripta Mater., 2007, vol. 57, pp. 217–20.CrossRefGoogle Scholar
  41. 41.
    B. Moser, T. Hanlon, K.S. Kumar, and S. Suresh: Scripta Mater., 2006, vol. 54, pp. 1151–55.CrossRefGoogle Scholar
  42. 42.
    Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Science, 2004, vol. 305, pp. 654–57.CrossRefGoogle Scholar
  43. 43.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–74.CrossRefGoogle Scholar
  44. 44.
    M.A. Meyers, A. Mishra, and D.J. Benson: Progr. Mater. Sci., 2006, vol. 51, pp. 427–556.CrossRefGoogle Scholar
  45. 45.
    T. Bell: Powder Metall., 1991, vol. 34, pp. 253–59.Google Scholar
  46. 46.
    D.C. McIntyre, E.L. Neau, and R.W. Stinnett: Adv. Mater. Process., 1999, vol. 5, pp. 31–38.Google Scholar
  47. 47.
    V.A. Shulov, N.A. Nochovnaya, G.E. Remnev, F. Pellerin, and P. Monge-Cadet: Surf. Coat. Technol., 1998, vol. 99, pp. 74–81.CrossRefGoogle Scholar
  48. 48.
    Peening Media, General Requirements. Subsection: Cut Wire Shot, Aerospace Material Specification AMS 2421/3, May 2006.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • A. M. Wusatowska-Sarnek
    • 1
    Email author
  • B. Dubiel
    • 2
  • A. Czyrska-Filemonowicz
    • 2
  • P. R. Bhowal
    • 1
  • N. Ben Salah
    • 3
    • 4
  • J. E. Klemberg-Sapieha
    • 5
  1. 1.Pratt & Whitney, Materials & Processes EngineeringEast HartfordUSA
  2. 2.Faculty of Metals Engineering and Industrial Computer ScienceAGH University of Science and TechnologyKrakowPoland
  3. 3.Materials Engineering, Pratt & Whitney CanadaLongueuilCanada
  4. 4.HerouxDevtek, Engineering R&DLongueuilCanada
  5. 5.Functional Coatings and Surface Engineering Laboratory, Department of Engineering PhysicsÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations