Metallurgical and Materials Transactions A

, Volume 42, Issue 11, pp 3447–3458 | Cite as

Investigation of the Effects of Ni, Fe, and Mn on the Formation of Complex Intermetallic Compounds in Al-Si-Cu-Mg-Ni Alloys

Article

Abstract

The aim of this work is to partially substitute Fe and Mn for Ni in the 3HA piston alloy and to study the consequences through microstructural evaluation and the thermal analysis technique. Three types of near-eutectic alloys containing (2.6 wt pct Ni-0.2 wt pct Fe-0.1 wt pct Mn), (1.8 wt pct Ni-0.75 wt pct Fe-0.3 wt pct Mn), and (1 wt pct Ni-1.15 wt pct Fe-0.6 wt pct Mn) were produced, and their solidification was studied at the cooling rate of 0.9 K/s (°C/s) using the computer-aided thermal analysis technique. Optical microscopy and scanning electron microscopy were used to study the microstructure of the samples, and energy dispersive X-ray (EDX) analysis was used to identify the composition of the phases. Also, the quantity of the phases was measured using the image analysis technique. The results show that Ni mainly participates as Al3Ni, Al9FeNi, and Al3CuNi phases in the high Ni-containing alloy (2.6 wt pct Ni). In addition, substitution of Ni by Fe and Mn makes Al9FeNi the only Ni-rich phase, and Al12(Fe,Mn)3Si2 appears as an important Fe-rich intermetallic compound in the alloys with the higher Fe and Mn contents.

References

  1. 1.
    H. Yamagata: The Science and Technology of Materials in Automotive Engines, Chapter 3, The Piston, Woodhead Publishing Ltd., Cambridge, United Kingdom, 2005.Google Scholar
  2. 2.
    J.A. Lee: Report No. 97-10, Marshall Space Flight Center, Huntsville, AL, Dec. 1998.Google Scholar
  3. 3.
    N.A. Belov, A.A. Aksenov, and D.G. Eskin: Iron in Aluminum Alloys: Impurity and Alloying Element, Taylor & Francis, London, 2002.Google Scholar
  4. 4.
    Z. Qian, X. Liu, D. Zhao, and G. Zhang: Mater. Lett., 2008, vol. 62, pp. 2146–49.CrossRefGoogle Scholar
  5. 5.
    Y. Komiyama, K. Uchida, and M. Gunshi: J. Jpn. Inst. Light Met., 1978, vol. 28, pp. 377–82.Google Scholar
  6. 6.
    C.-L. Chen and R.C. Thomson: J. Alloys Compd., 2009, vol. 490, pp. 293–300.CrossRefGoogle Scholar
  7. 7.
    C.-L. Chen, A. Richter, and R.C. Thomson: Intermetallics, 2009, vol. 17, pp. 634–41.CrossRefGoogle Scholar
  8. 8.
    Z. Asghar, G. Requena, H.P. Degischer, and P. Cloetens: Acta Mater., 2009, vol. 57, pp. 4125–32.CrossRefGoogle Scholar
  9. 9.
    N.A. Belov, D.G. Eskin, and N.N. Avxentieva: Acta Mater., 2005, vol. 53, pp. 4709–22.CrossRefGoogle Scholar
  10. 10.
    N.A. Belov, D.G. Eskin, and A.A. Aksenov: Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Chapter 7, Alloys with Nickel, Elsevier Ltd., Oxford, United Kingdom, 2005.Google Scholar
  11. 11.
    T.O. Mbuya, B.O. Odera, and S.P. Nganga: Int. J. Cast Met. Res., 2003, vol. 16, pp. 451–65.Google Scholar
  12. 12.
    P.N. Crepeau: AFS Trans., 1995, vol. 103, pp. 361–66.Google Scholar
  13. 13.
    A.N. Lakshmanan, S.G. Shabestari, and J.E. Gruzleski: Z. Metallkd., 1995, vol. 86, pp. 457–64.Google Scholar
  14. 14.
    Y.Y. Wu, J.G. Song, B.G. Jiang, X.F. Liu, H.X. Chen, and X.F. Bian: Foundry (Chinese), 2006, vol. 55, pp. 1178–80.Google Scholar
  15. 15.
    S.G. Shabestari and J.E. Gruzleski: AFS Trans., 1995, vol. 103, pp. 285–93.Google Scholar
  16. 16.
    B. Kulunk, S.G. Shabestari, J.E. Gruzleski, and D.J. Zuliani: AFS Trans., 1996, vol. 104, pp. 1189–93.Google Scholar
  17. 17.
    F.H. Samuel, P. Ouellet, A.M. Samuel, and H.W. Doty: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2871–84.CrossRefGoogle Scholar
  18. 18.
    E.A. Elsharkawi, E. Samuel, A.M. Samuel, and F.H. Samuel: J. Mater. Sci., 2010, vol. 45, pp. 1528–39.CrossRefGoogle Scholar
  19. 19.
    S.S.S. Kumari, R.M. Pillai, T.P.D. Rajan, and B.C. Pai: Mater. Sci. Eng. A, 2007, vol. 460, pp. 561–73.CrossRefGoogle Scholar
  20. 20.
    C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Scripta Mater., 2005, vol. 53, pp. 955–58.CrossRefGoogle Scholar
  21. 21.
    L.F. Mondolfo: Manganese in Aluminium Alloys, Manganese Center, Paris, 1978.Google Scholar
  22. 22.
    Y. Hwang, H.W. Doty, and M.J. Kaufman: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496–504.CrossRefGoogle Scholar
  23. 23.
    S.G. Shabestari and J.E. Gruzleski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 999–1006.CrossRefGoogle Scholar
  24. 24.
    S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289–98.Google Scholar
  25. 25.
    M. Warmuzek, W. Ratuszek, and G. Sęk-Sas: Mater. Charact., 2005, vol. 54, pp. 31–40.CrossRefGoogle Scholar
  26. 26.
    D.A. Granger: AFS Trans., 1991, vol. 99, pp. 379–83.Google Scholar
  27. 27.
    J.G. Kaufman and E.L. Rooy: Aluminum Alloy Castings: Properties, Processes and Applications, ASM INTERNATIONAL, Materials Park, OH, 2004, p. 80.Google Scholar
  28. 28.
    L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, London, 1976.Google Scholar
  29. 29.
    L. Zhang, Y. Du, H. Xu, C. Tang, H. Chen, and W. Zhang: J. Alloys Compd., 2008, vol. 454, pp. 129–35.CrossRefGoogle Scholar
  30. 30.
    M.M. Kersker, W.G. Truckner, D.A. Granger, and E.L. Rooy: U.S. Patent No. 4,681,736, 1987.Google Scholar
  31. 31.
    L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, AFS/Skanaluminum, Oslo, 1990.Google Scholar
  32. 32.
    L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 1, Wrought Alloys, AFS/Skanaluminium, Oslo, 1986.Google Scholar
  33. 33.
    S.G. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150–58.CrossRefGoogle Scholar
  34. 34.
    M. Malekan and S.G. Shabestari: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3196–3203.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.Center of Excellence for Advanced Materials Processing (CEAMP), School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)Narmak, TehranIran

Personalised recommendations