Tempering of Martensite in Dual-Phase Steels and Its Effects on Softening Behavior

  • V. H. Baltazar Hernandez
  • S. S. NayakEmail author
  • Y. Zhou


The isothermal and nonisothermal tempering of martensite in dual-phase (DP) steels was investigated mainly by analytical transmission electron microscopy, and the effect on softening behavior was studied. The isothermal tempering resulted in coarsening and spheroidization of cementite and complete recovery of laths. However, nonisothermal tempering manifested fine quasi-spherical intralath and platelike interlath cementite, decomposition of retained austenite, and partial recovery of laths. The distinct characteristic of nonisothermal tempering was primarily attributed to the synergistic effect of delay in cementite precipitation and insufficient time for diffusion of carbon due to rapid heating that delays the third stage of tempering. The finer size and platelike morphology of cementite coupled with partial recovery of lath resulted in reduced softening in nonisothermal tempering compared to severe softening in isothermal tempering due to large spheroidized cementite and complete recovery of lath substructure. The substitutional content of precipitated cementite in nonisothermal tempering was correlated to the richness of particular steel chemistry. Softening resistance during nonisothermal tempering was related to DP steel chemistry, i.e., Cr and Mn content. Fine cementite and less decomposed martensite in rich chemistry confer high resistance to softening compared to leaner chemistries, which indicated severe decomposition of martensite with coarser cementite.


Martensite Cementite Isothermal Tempering Martensitic Steel Cementite Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Auto21 (one of the Networks of Centres for Excellence supported by the Canadian Government), The Initiative for Automotive Manufacturing Innovation (IAMI) supported by the Ontario Government, International Zinc Association (IZA) at Belgium, Arcelor Mittal Dofasco at Hamilton, and Huys Industries in Canada. VHBH acknowledges the support from CONACYT Mexico and the Autonomous University of Zacatecas Mexico. The authors are thankful to Professor Scott Lawson, the Centre for Advanced Materials Joining, University of Waterloo, for his constructive comments and suggestions.


  1. 1.
    Committee on Automotive Applications: Advanced High Strength Steel (AHSS) Application Guidelines, International Iron and Steel Institute, Middletown, Ohio, 2009, Version 4.1, pp. 1–4.Google Scholar
  2. 2.
    P.K. Ghosh, P.C. Gupta, R. Avtar, and B.K. Jha: ISIJ Int., 1990, vol. 30, pp. 233–40.CrossRefGoogle Scholar
  3. 3.
    M. Marya, K. Wang, L.G. Hector, Jr., and X. Gayden: J. Manuf. Sci. Eng., 2006, vol. 128, pp. 287–98.CrossRefGoogle Scholar
  4. 4.
    R. Neugebauer, S. Scheffler, R. Poprawe, and A. Weisheit: Prod. Eng., 2009, vol. 3 (4–5), pp. 347–51.CrossRefGoogle Scholar
  5. 5.
    N. Sreenivasan, M. Xia, S. Lawson, and Y. Zhou: J. Eng. Mater. Technol., 2008, vol. 130, pp. 041004-1–041004-9.CrossRefGoogle Scholar
  6. 6.
    S.K. Panda, N. Sreenivasan, M.L. Kuntz, and Y. Zou: J. Eng. Mater. Technol., 2008, vol. 130, pp. 041003-1–041003-9.CrossRefGoogle Scholar
  7. 7.
    M. Xia, E. Biro, Z. Tian, and Y. Zhou: ISIJ Int., 2008, vol. 48, pp. 809–14.CrossRefGoogle Scholar
  8. 8.
    V.H. Baltazar Hernandez, M.L. Kuntz, M.I. Khan, and Y. Zhou: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 769–76.CrossRefGoogle Scholar
  9. 9.
    M.I. Khan, M.L. Kuntz, and Y. Zhou: Sci. Technol. Weld. Join., 2008, vol. 13 (1), pp. 49–59.Google Scholar
  10. 10.
    E. Biro and A. Lee: AWS Sheet Metal Welding Conf. XI, Livonia, MI, 2004, paper 5.2.Google Scholar
  11. 11.
    G.B. Olson and W.S. Owen: Martensite, ASM INTERNATIONAL, Metals Park, OH, 1992, p. 261.Google Scholar
  12. 12.
    G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–38.CrossRefGoogle Scholar
  13. 13.
    J. Chance and N. Ridley: Metall. Trans. A, 1981, vol. 12A, pp. 1205–13.Google Scholar
  14. 14.
    R.C. Thomson and M.K. Miller: Acta Mater., 1998, vol. 46, pp. 2203–13.CrossRefGoogle Scholar
  15. 15.
    D.L. Williamson, R.G. Schupmann, J.P. Materkowski, and G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 379–82.Google Scholar
  16. 16.
    M. Sarikaya, A.K. Jhingan, and G. Thomas: Metall. Trans. A, 1983, vol. 14A, pp. 1121–33.Google Scholar
  17. 17.
    G. Thomas: Metall. Trans. A, 1978, vol. 9A, pp. 438–50.Google Scholar
  18. 18.
    G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–53.CrossRefGoogle Scholar
  19. 19.
    R.A. Grange, C.R. Hribal, and L.F. Porter: Metall. Trans. A, 1977, vol. 8A, pp. 1775–85.Google Scholar
  20. 20.
    R.N. Caron and G. Krauss: Metall. Trans., 1972, vol. 3, pp. 2381–89.CrossRefGoogle Scholar
  21. 21.
    T. Maki, S. Morito, and T. Furuhara: Including Steel Heat Treating in the New Millennium, 19th ASM Heat Treating Society Conf. Proc., ASM International, Cincinnati, OH, Nov. 1–4, 1999, pp. 631–37.Google Scholar
  22. 22.
    N. Farabi, D.L Chen, J. Li, Y. Zhou, and S.J. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1215–22.CrossRefGoogle Scholar
  23. 23.
    E. Biro, J.R. McDermid, J.D. Embury, and Y. Zhou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2348–56.CrossRefGoogle Scholar
  24. 24.
    T. Furuhara, K. Kobayashi, and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937–44.CrossRefGoogle Scholar
  25. 25.
    A. Nagao, K. Hayashi, K. Oi, S. Mitao, and N. Shikanai: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4720–25.CrossRefGoogle Scholar
  26. 26.
    S. Tae Ahn, D.S. Kim, and W.J. Nam: J. Mater. Process. Technol., 2005, vol. 160, pp. 54–58.CrossRefGoogle Scholar
  27. 27.
    N. Yurioka, H. Suzuki, S. Ohshita, and S. Saito: Weld. J., 1983, June, pp. 147–53.Google Scholar
  28. 28.
    I.A. EI-Sesy and Z.M. EI-Baradie: Mater. Lett., 2002, vol. 57, pp. 580–85.CrossRefGoogle Scholar
  29. 29.
    P. Messien, J.-C. Hernan, and T. Gréday: Fundamentals of Dual-Phase Steels, Proc. Symp., TMS-AIME, Warrendale, PA, 1981, pp. 161–80.Google Scholar
  30. 30.
    W. F. Smith and J. Hashemi: Foundations of Materials Science and Engineering, 4th ed., McGraw-Hill, New York, NY, 2006, p. 363.Google Scholar
  31. 31.
    V.H. Baltazar Hernandez, S.K. Panda, Y. Okita, and Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638–47.CrossRefGoogle Scholar
  32. 32.
    V.H. Baltazar Hernandez: Ph.D. Thesis, University of Waterloo, Waterloo, 2010.Google Scholar
  33. 33.
    T. Maki, K. Tsuzaki, and I. Tamura: Trans. ISIJ, 1980, vol. 20, pp. 207–14.Google Scholar
  34. 34.
    G. Tomas: Metall. Trans., 1971, vol. 2, pp. 2373–85.CrossRefGoogle Scholar
  35. 35.
    G.R. Speich: Fundamentals of Dual-Phase Steels, Proc. Symp, TMS-AIME, Warrendale, PA, 1981, p. 16.Google Scholar
  36. 36.
    M.K. Miller, P.A. Beaven, and D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.Google Scholar
  37. 37.
    G.R. Speich: Trans. AIME, 1969, vol. 245, pp. 2553–64.Google Scholar
  38. 38.
    K.T. Aust and J.W. Rutter: Grain Boundary Migration, Recovery and Recrystallization of Metals, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1963, pp. 133–69.Google Scholar
  39. 39.
    F.G. Wei and K. Tsuzaki: Acta Mater., 2005, vol. 53, pp. 2419–24.CrossRefGoogle Scholar
  40. 40.
    S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga: Mater. Trans. JIM, 1991, vol. 32, pp. 207–13.Google Scholar
  41. 41.
    B.A. Lindsley and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 341–51.CrossRefGoogle Scholar
  42. 42.
    I.M. Lifshitz and V.V. Slyosov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.CrossRefGoogle Scholar
  43. 43.
    C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.Google Scholar
  44. 44.
    A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–09.CrossRefGoogle Scholar
  45. 45.
    M.V. Speight: Acta Metall., 1968, vol. 16, pp. 133–35.CrossRefGoogle Scholar
  46. 46.
    Z.Q. Lv, S.H. Sun, Z.H. Wang, M.G. Qv, P. Jiang, and W.T. Fu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 107–12.CrossRefGoogle Scholar
  47. 47.
    A. Joarder, J.N. Jha, S.N. Ojha, and D.S. Sharma: Mater. Characterization, 1990, vol. 25, pp. 199–209.CrossRefGoogle Scholar
  48. 48.
    X. Huang and N.H. Pryds: Acta Mater., 2000, vol. 48, pp. 4073–82.CrossRefGoogle Scholar
  49. 49.
    P. Schaaf, S. Wiesen, and U. Gonser: Acta Metall. Mater., 1992, vol. 40, pp. 373–79.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • V. H. Baltazar Hernandez
    • 1
    • 2
  • S. S. Nayak
    • 1
    • 3
    Email author
  • Y. Zhou
    • 1
    • 3
  1. 1.Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.MpyM-EPMM Academic Unit of EngineeringAutonomous University of ZacatecasZacatecasMexico
  3. 3.Centre for Advanced Materials JoiningUniversity of WaterlooWaterlooCanada

Personalised recommendations