Metallurgical and Materials Transactions A

, Volume 42, Issue 10, pp 3190–3199 | Cite as

As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting

  • T. Vilaro
  • C. Colin
  • J. D. Bartout


Selective laser melting (SLM) is a rapid manufacturing process that enables the buildup of very complex parts in short delays directly from powder beds. Due to the high laser beam energy during very short interaction times and the high solidification rates of the melting pool, the resulting microstructure is out-of-equilibrium and particularly textured. This type of as-fabricated microstructure may not satisfy the aeronautical criterion and requires post heat treatments. Optimized heat treatments are developed, in one side, to homogenize and form the stable phases α and β while preventing exaggerated grain growth. In the other side, heat treatment is investigated to relieve the thermal stresses appearing during cooling. This study is aimed at presenting the various types of microstructure of the Ti-6Al-4V alloy after postfabrication heat treatments below or above the β transus. Tensile tests are then carried out at room temperature in order to assess the effect of the microstructures on the mechanical properties. The fine as-fabricated microstructure presents high yield and ultimate strengths, whereas the ductility is well below the standard. A strong anisotropy of fracture between the two loading directions is noted, which is attributed to the manufacturing defects. Conventional and optimized heat treatments exhibit high yield and ultimate strengths while the ductility is significantly improved. This is due to a new optimization of the process parameters allowing drastic reduction of the number of defects. These two heat treatments enable now a choice of the morphology of the grains between columnar or equiaxial as a function of the type of loading.


Martensite Water Quenching Selective Laser Melting Melting Pool Selective Laser Melting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Stephane Abed (Poly-Shape) for providing the Ti-6Al-4V material. They acknowledge the ANRT foundation for helping in the funding of this study.


  1. 1.
    G.N. Levy, R. Schindel, and J.P. Kruth: Manufact. Technol., 2003, vol. 52, pp. 589–609.Google Scholar
  2. 2.
    M. Rombouts, J.P. Kruth, L. Froyen, and P. Mercelis: Manufact. Technol., 2006, vol. 55, pp. 187–92.Google Scholar
  3. 3.
    I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov: Appl. Surf. Sci., 2009, vol. 225, pp. 5523–27.CrossRefGoogle Scholar
  4. 4.
    T. Vilaro, V. Kottman-Rexerodt, M. Thomas, and C. Colin: Adv. Mater. Res., 2010, vols. 89–91, pp. 586–91.CrossRefGoogle Scholar
  5. 5.
    J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers: J. Mater. Process. Technol., 2004, vol. 149, pp. 616–22.CrossRefGoogle Scholar
  6. 6.
    K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process. Technol., 2008, vol. 195, pp. 77–87.CrossRefGoogle Scholar
  7. 7.
    P.J. Maziasz: Scripta Mater., 1998, vol. 39, pp. 1471–76.CrossRefGoogle Scholar
  8. 8.
    N.W. Klingbeil, J.L. Beuth, R.K. Chin, and C.H. Amon: Int. J. Mech. Sci., 2002, vol. 44, pp. 57–77.CrossRefGoogle Scholar
  9. 9.
    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: Manufact. Technol., 2004, vol. 53, pp. 195–98.Google Scholar
  10. 10.
    L.E. Murr, S.A. Quinones, and S.M. Gaytan: J. Mech. Behav. Biomed. Mater., 2009, vol. 2, pp. 20–32.CrossRefGoogle Scholar
  11. 11.
    S.H. Mok, G. Bi, J. Folkes, I. Pashby, and J. Segal: Surf. Coat. Technol., 2008, vol. 202, pp. 4613–19.CrossRefGoogle Scholar
  12. 12.
    Y. Combres: Traitements Thermiques des Alliages de Titane, Techniques de l’Ingénieur, M1335, 1995.Google Scholar
  13. 13.
    I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov: Appl. Surf. Sci., 2007, vol. 254, pp. 980–83.CrossRefGoogle Scholar
  14. 14.
    J. Maisonneuve: Ph.D. Thesis, ENSMP, Mines ParisTech, Paris, 2008.Google Scholar
  15. 15.
    X. Wu: J. Eng. Mater. Technol., 2003, vol. 135, pp. 266–70.Google Scholar
  16. 16.
    M. Qian, J. Mei, J. Liang, and X. Wu: Mater. Sci. Technol., 2005, vol. 21, pp. 597–605.CrossRefGoogle Scholar
  17. 17.
    A. Longuet: Ph.D. Thesis, ENSMP, Mines ParisTech, Paris, 2010.Google Scholar
  18. 18.
    J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 8327–39.CrossRefGoogle Scholar
  19. 19.
    F. Delannay, D. Pardoen, and C. Colin: Acta Mater., 2005, vol. 53, pp. 1655–64.CrossRefGoogle Scholar
  20. 20.
    F.X. Gil: J. Alloys Compd., 1996, vol. 234, p. 287.CrossRefGoogle Scholar
  21. 21.
    T. Ahmed and H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 206–11.Google Scholar
  22. 22.
    D. Franois, A. Pineau, and A. Zaoui: Comportement Mécanique des Matériaux, Hermès Science Publications, Paris, 2009.Google Scholar
  23. 23.
    L.T. Lee: Mater. Sci. Eng., 1990, vol. 128, pp. 77–89.CrossRefGoogle Scholar
  24. 24.
    B. Hadj Sassi: Ph.D. Thesis, ENSTA ParisTech, Paris, 1977.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.Poly-ShapeVillecresnesFrance
  2. 2.Materials Centre of Mines ParisTech, CNRS UMR 7633EvryFrance

Personalised recommendations