Metallurgical and Materials Transactions A

, Volume 42, Issue 10, pp 2975–2984 | Cite as

Materials’ Physics in Extremes: Akrology

Symposium: Structural Materials for the Americas

Abstract

An understanding of the behavior of materials in mechanical extremes has become a pressing need in order to exploit new environments. Any impulse consists of a cascade of deformation mechanisms starting with ultrafast and concluding with slower ones, yet these have not been suitably defined over the past years. This requirement has prompted the design of new experimental platforms and diagnostics and an increase in modern computer power. However, this effort has removed necessary focus on the operating suite of deformation mechanisms activated in loaded materials. This article reviews the material response and attempts to order physical pathways according to the length and time scales they operate within. A dimensionless constant is introduced to scale the contributions of component pathways by quantifying their completion with respect to the loading impulse applied. This concept is extended to suggest a new framework to describe the response to arbitrary insult and to show the relevance of particular techniques to component parts of the problem. The application of a step impulse via shock loading is shown to be the primary derivation experiment to address these needs and map components of the response.

Notes

Acknowledgments

These ideas have developed over my time spent working in, and advising on, the future directions of this field. I thank all of the colleagues and students who have contributed, particularly my groups in Cambridge, Shrivenham, and across AWE. These ideas could not have progressed without my many friends at the United States national labs and academia who have discussed these concepts with me, and I thank them for their patience. This paper was presented at the first TMS-ABM Materials Congress held in 2010. I thank the organizers for their invitation and look forward to many further meetings over future years. The excellent and helpful comments of the reviewers have added considerably to the picture presented here; I thank them for their patience in this effort.

References

  1. 1.
    G. Wadsworth: Basic Research Needs for Materials Under Extreme Environments, BES, United States Department of Energy, Washington, DC, 2007, http://www.sc.doe.gov/bes/reports/abstracts.html#MUEE.
  2. 2.
    N.K. Bourne, G.T. Gray III, and J.C.F. Millett: J. Appl. Phys., 2009, vol. 106 (9), p. 091301.CrossRefGoogle Scholar
  3. 3.
    M.F. Ashby: Materials Selection in Design, Pergamon Press, Oxford, UK, 1992.Google Scholar
  4. 4.
    P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36 (1), p. 81–93.CrossRefGoogle Scholar
  5. 5.
    D.L. Preston, D.L. Tonks, and D.C. Wallace: J. Appl. Phys., 2003, vol. 93, p. 211.CrossRefGoogle Scholar
  6. 6.
    D.J. Steinberg, S.G. Cochran, and M.W. Guinan: J. Appl. Phys., 1980, vol. 51, p. 1498.CrossRefGoogle Scholar
  7. 7.
    F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61 p. 1816.CrossRefGoogle Scholar
  8. 8.
    J.A. Zukas: Introduction to Hydrocodes, Elsevier, Oxford, UK, 2003.Google Scholar
  9. 9.
    R.E. Smallman and R.J. Bishop: Modern Physical Metallurgy and Materials Engineering, 6th ed., Elsevier, Boston, MA, 1999.Google Scholar
  10. 10.
    B.A. Remington, R.P. Drake, and D.D. Ryutov: Rev. Mod. Phys., 2006, vol. 78, pp. 755–807.CrossRefGoogle Scholar
  11. 11.
    M. Reiner: Phys. Today, 1964, vol. 17 p. 62.CrossRefGoogle Scholar
  12. 12.
    A. Kelly: Strong Solids, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1973.Google Scholar
  13. 13.
    L.E. Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Upper Saddle River, NJ, 1969.Google Scholar
  14. 14.
    G.T. Gray III: in ASM Handbook, vol. 8, Mechanical Testing and Evaluation, H. Kuhn and D. Medlin, eds., ASM INTERNATIONAL, Materials Park, OH, 2000, pp. 530–38.Google Scholar
  15. 15.
    N.K. Bourne, J.C.F. Millett, and G.T. Gray III: J. Mater. Sci., 2009, 44 (13), pp. 3319–43.CrossRefGoogle Scholar
  16. 16.
    B.R. Lawn and T.R. Wilshaw: Fracture of Brittle Solids, Cambridge University Press, Cambridge, United Kingdom, 1975.Google Scholar
  17. 17.
    N.K. Bourne: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, and W.G. Proud, eds., American Institute of Physics, Melville, New York, NY, 2009, pp. 993–99.Google Scholar
  18. 18.
    N.K. Bourne, J.C.F. Millett, Z. Rosenberg, and N.H. Murray: J. Mech. Phys. Solids, 1998, vol. 46 (10), pp. 1887–1908.CrossRefGoogle Scholar
  19. 19.
    N.K. Bourne: Int. J. Imp. Eng., 2008, vol. 35, pp. 674–83.CrossRefGoogle Scholar
  20. 20.
    L. Davison and R.A. Graham: Phys. Rep., 1979, vol. 55, pp. 255–379.CrossRefGoogle Scholar
  21. 21.
    N.K. Bourne and G.T. Gray III: Proc. R. Soc. London A, 2005, vol. 460, pp. 3297–3312.Google Scholar
  22. 22.
    B.Y. Cao, M.A. Meyers, D.H. Lassila, M.S. Schneider, B.K. Kad, C.X. Huang, Y.B. Xu, D.H. Kalantar, and B.A. Remington: Mater. Sci. Eng. A, 200, vol. 409, pp. 270–81.Google Scholar
  23. 23.
    D.E. Grady: J. Mech. Phys. Solids, 1988, vol. 36, pp. 353–84.CrossRefGoogle Scholar
  24. 24.
    D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Today, 1977, vol. 30, p. 46.CrossRefGoogle Scholar
  25. 25.
    G.T. Gray III, N.K. Bourne, and B.L. Henrie: J. Appl. Phys., 2007, vol. 101, p. 093507.CrossRefGoogle Scholar
  26. 26.
    G.T. Gray III, L.M. Hull, J.R. Faulkner, M.E. Briggs, E.K. Cerreta, F.L. Addessio, and N.K. Bourne: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, and W.G. Proud, eds., American Institute of Physics, Melville, NY, 2009, pp. 1097–1103.Google Scholar
  27. 27.
    G.I. Kanel and V.E. Fortov: Adv. Mech., 1987, vol. 10, p. 3.Google Scholar
  28. 28.
    E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horovitz, and S. Maman: Appl. Phys. Lett., 2000, vol. 76 (12), pp. 1555–57.CrossRefGoogle Scholar
  29. 29.
    S. Rothman, S. Bandyopadhyay, C.R.D. Brown, A.A. George, N. Gjshchkhmyj, R.S.R. Greedharee, T.M. Guymer, N. Park, M.C. Parsley, E. Price, and J.G. Turner: in Shock Compression of Condensed Matter 2009, M. Elert, W.T. Buttler, M.D. Furnish, and W.W. Anderson, eds., American Institute of Physics, Melville, NY, 2009, pp. 961–64.Google Scholar
  30. 30.
    S. Luo, D. Swift, T. Tierney, D. Paisley, G. Kyrala, R. Johnson, A. Hauer, O. Tschauner, and P. Asimow: High Press. Res., 2004, vol. 24, pp. 409–22.CrossRefGoogle Scholar
  31. 31.
    B.A. Remington, P. Allen, E.M. Bringa, J. Hawreliak, D. Ho, K.T. Lorenz, H. Lorenzana, J.M. McNaney, M.A. Meyers, S.W. Pollaine, K. Rosolankova, B. Sadik, M.S. Schneider, D. Swift, J. Wark, and B. Yaakobi: Mater. Sci. Technol., 2006, vol. 22 (4), pp. 474–88.CrossRefGoogle Scholar
  32. 32.
    W.H. Zurek: Nat. Phys., 2009, vol. 5 (3), pp. 181–88.CrossRefGoogle Scholar
  33. 33.
    K. Kadau, T.C. Germann, P.S. Lomdahl, R.C. Albers, J.S. Wark, A. Higginbotham, and B.L. Holian: Phys. Rev. Lett., 2007, vol. 96 (13), p. 135701.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.AWEAldermaston, ReadingUnited Kingdom

Personalised recommendations