Metallurgical and Materials Transactions A

, Volume 42, Issue 9, pp 2716–2722 | Cite as

Tool Geometry for Friction Stir Welding—Optimum Shoulder Diameter

Article

Abstract

The most important geometric parameter in the friction stir welding (FSW) tool design is the shoulder diameter, which is currently estimated by trial and error. Here, we report a combined experimental and theoretical investigation on the influence of shoulder diameter on thermal cycles, peak temperatures, power requirements, and torque during FSW of AA7075-T6. An optimum tool shoulder diameter is identified using a three-dimensional, heat transfer and materials flow model. First, the predictive capability of the model is tested by comparing the computed values of peak temperature, spindle power, and torque requirements for various shoulder diameters against the corresponding experimental data. The change in the values of these variables with shoulder diameter is correctly predicted by the model. The model is then used to identify the optimum tool shoulder diameter that facilitates maximal use of the supplied torque in overcoming interfacial sticking. The tool with optimum shoulder diameter is shown to result in acceptable yield strength (YS) and ductility.

Notes

Acknowledgments

The authors thank Dr. Thomas J. Lienert, Los Alamos National Laboratory, for helpful comments in the preparation of this article. This research was supported by a grant from the Materials Division, Office of Naval Research, Dr. William Mullins, Program Director.

References

  1. 1.
    H.K.D.H. Bhadeshia and T. DebRoy: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 193–96.CrossRefGoogle Scholar
  2. 2.
    T. DebRoy and H.K.D.H. Bhadeshia: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 266–70.CrossRefGoogle Scholar
  3. 3.
    R. Nandan, T.J. Lienert, and T. DebRoy: Int. J. Mater. Res., 2008, vol. 99, pp. 434–44.Google Scholar
  4. 4.
    R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy: Acta Mater., 2007, vol. 55, pp. 883–95.CrossRefGoogle Scholar
  5. 5.
    R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 526–37.CrossRefGoogle Scholar
  6. 6.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: “Friction Stir Butt Welding”, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, Dec. 1991; U.S. Patent Application No. 5460317, Oct. 1995.Google Scholar
  7. 7.
    G. Buffa, J. Hua, and R. Shivpuri: Mater. Sci. Eng. A, 2006, vol. 419, pp. 381–88.CrossRefGoogle Scholar
  8. 8.
    H. Fujii, L. Cui, and M. Maeda: Mater. Sci. Eng. A, 2006, vol. 419, pp. 25–31.CrossRefGoogle Scholar
  9. 9.
    K. Kumar and S.V. Kailas: Mater. Sci. Eng. A, 2008, vol. 485, pp. 367–74.CrossRefGoogle Scholar
  10. 10.
    Y.H. Zhao, S.B. Lin, L. Wu, and F.X. Qu: Mater. Lett., 2005, vol. 59, pp. 2948–52.CrossRefGoogle Scholar
  11. 11.
    Y.H. Zhao, S.B. Lin, F.X. Qu, and L. Wu: Mater. Sci. Technol., 2006, vol. 22, pp. 45–50.CrossRefGoogle Scholar
  12. 12.
    D.G. Hattingh, C. Bignaut, T.I.van Niekerk, and M.N. James: J. Mater. Process. Technol., 2008, vol. 203, pp. 46–57.CrossRefGoogle Scholar
  13. 13.
    W.M. Thomas, K.I. Johnson, and C.S. Wiesner: Adv. Eng. Mater., 2003, vol. 5, pp. 485–90.CrossRefGoogle Scholar
  14. 14.
    W.M. Thomas: Mater. Sci. Forum, 2003, vols. 426–432, pp. 229–36.CrossRefGoogle Scholar
  15. 15.
    P.A. Colegrove and H.R. Shercliff: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 345–51.CrossRefGoogle Scholar
  16. 16.
    P.A. Colegrove and H.R. Shercliff: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 352–61.CrossRefGoogle Scholar
  17. 17.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia: Prog. Mater. Sci., 2008, vol. 53, pp. 980–1023.CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, Y.L. Liu, and J.T. Chen: Int. J. Adv. Manuf. Technol., 2009, vol. 45, pp. 889–95.CrossRefGoogle Scholar
  19. 19.
    A. Scialpi, L.A.C. De Filippis, and P. Cavaliere: Mater. Des., 2007, vol. 28, pp. 1124–29.CrossRefGoogle Scholar
  20. 20.
    R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues, and P. Vilaca: Mater. Sci. Eng. A, 2008, vol. 498, pp. 384–91.CrossRefGoogle Scholar
  21. 21.
    K. Elangovan and V. Balasubramanian: Mater. Des., 2008, vol. 29, pp. 362–73.CrossRefGoogle Scholar
  22. 22.
    A. Arora, A. De, and T. DebRoy: Scripta Mater., 2011, vol. 64, pp. 9–12.CrossRefGoogle Scholar
  23. 23.
    R. Nandan, G.G. Roy, and T. DebRoy: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1247–59.CrossRefGoogle Scholar
  24. 24.
    R. Nandan, B. Prabu, A. De, and T. DebRoy: Weld. J., 2007, vol. 86, pp. 313s–322s.Google Scholar
  25. 25.
    A. Arora, R. Nandan, A. P. Reynolds, and T. DebRoy: Scripta Mater., 2009, vol. 60, pp. 13–16.CrossRefGoogle Scholar
  26. 26.
    A. Arora, Z. Zhang, A. De, and T. DebRoy: Scripta Mater., 2009, vol. 61, pp. 863–66.CrossRefGoogle Scholar
  27. 27.
    Q. Li and M. Lovell: J. Mater. Process. Technol., 2005, vol. 160, pp. 245–56.CrossRefGoogle Scholar
  28. 28.
    P.A. Colegrove and H.R. Shercliff: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 429–41.CrossRefGoogle Scholar
  29. 29.
    P.A. Colegrove, H.R. Shercliff, and R. Zetter: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 284–97.CrossRefGoogle Scholar
  30. 30.
    M.W. Mahoney, C.G. Rodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.CrossRefGoogle Scholar
  31. 31.
    E.J. Hearn: Mechanics of Materials 1, 3rd ed., Butterworth Heinemann, Oxford, United Kingdom, 1997, pp. 179–81.Google Scholar
  32. 32.
    J. Woolman and R.A. Mottram: The Mechanical and Physical Properties of the British Standard En Steels (B.S. 970-1955), Pergamon, New York, NY, 1964, vol. 2, p. 107.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyBombay, MumbaiIndia
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations