Metallurgical and Materials Transactions A

, Volume 42, Issue 12, pp 3638–3651 | Cite as

Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel

  • Seawoong Lee
  • Seok-Jae Lee
  • S. Santhosh Kumar
  • Kyooyoung Lee
  • B. C. De Cooman
Symposium: Austenite Formation and Decomposition IV


Multiphase, ultra-fine-grained transformation-induced plasticity (MP UFG TRIP) steel containing 6 mass pct Mn was obtained by cold rolling and intercritical annealing of an initially fully martensitic microstructure. UFG microstructures with an average grain size less than 300 nm were obtained. The amount of austenite in the microstructures, speculated to be formed by diffusionless transformation, was controlled by changing the intercritical temperature. The tensile properties were strongly influenced by the volume amount and the stability of the reversely transformed austenite. The MP UFG TRIP steel was characterized by pronounced localization of the deformation. The deformation band properties were analyzed in detail.


Austenite Martensite Deformation Band Intercritical Annealing Trip Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of POSCO. In addition, the authors thank Taejin Song, Dongwhi Kim, Chen Lei, and Jinkyung Kim for their assistance with the experiments. This research was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-10147).


  1. 1.
    J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 312–15.Google Scholar
  2. 2.
    K.-T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, and K.K. Um: Scripta Mater., 2004, vol. 51 (9), pp. 909–13.CrossRefGoogle Scholar
  3. 3.
    Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin: Acta Mater., 2005, vol. 53 (11), pp. 3125–34.CrossRefGoogle Scholar
  4. 4.
    X. Huang, N. Kamikawa, N. Tsuji, and N. Hansen: ISIJ Int., 2008, vol. 48 (8), pp. 1080–87.CrossRefGoogle Scholar
  5. 5.
    N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., 2008, vol. 48 (8), pp. 1114–21.CrossRefGoogle Scholar
  6. 6.
    Z. Horita, D. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1996, vol. 11 (8), pp. 1880–90.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRefGoogle Scholar
  8. 8.
    R.Z. Valiev: Nature, 2002, vol. 419, p. 887.CrossRefGoogle Scholar
  9. 9.
    R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.CrossRefGoogle Scholar
  10. 10.
    M.J. Merwin: Steel Product Metallurgy and Applications Product Metallurgy II, Proc. Materials Science and Technology Conference and Exhibition (MS&T 07), ASM, COBO Center, Detroit, MI, Sept. 16–20, 2007, pp. 515–36.Google Scholar
  11. 11.
    M.J. Merwin: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4327–32.CrossRefGoogle Scholar
  12. 12.
    S.J. Lee, Y.M. Park, and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 515, pp. 32–37.CrossRefGoogle Scholar
  13. 13.
    H. Schumann: Arch. Eisenhütt., 1967, vol. 38, p. 647; 1969, vol. 40, p. 1027.Google Scholar
  14. 14.
    E. Jimenez-Melero, N.H, van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56 (5), pp. 421–24.CrossRefGoogle Scholar
  15. 15.
    K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31 (12), pp. 1431–37.CrossRefGoogle Scholar
  16. 16.
    J. F. Breedis: Acta Metall., 1965, vol. 13, pp. 239–50.CrossRefGoogle Scholar
  17. 17.
    T. Vreeland, Jr., D.S. Wood, and D.S. Clark: Acta Metall., 1953, vol. 1 (4), pp. 414–21.CrossRefGoogle Scholar
  18. 18.
    D.W. Moon: Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1966.Google Scholar
  19. 19.
    P.J. Worthington and E. Smith: Acta Metall., 1964, vol. 12 (1), pp. 1277–81.CrossRefGoogle Scholar
  20. 20.
    E. Ma: Scripta Mater., 2003, vol. 49 (7), pp. 663–68.CrossRefGoogle Scholar
  21. 21.
    Y.G. Ko, D.H. Shin, K.T. Park, and C.S. Lee: Scripta Mater., 2006, vol. 54 (10), pp. 1785–89.CrossRefGoogle Scholar
  22. 22.
    N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and Daisuke Terada: ISIJ Int., 2008, vol. 48 (8), pp. 1114–21.Google Scholar
  23. 23.
    E.O. Hall: Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, NY, 1971, pp. 1–126.Google Scholar
  24. 24.
    Y. Tomota, A. Narui, and N. Tsuchida: ISIJ Int., 2008, vol. 48, pp. 1107–13.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Seawoong Lee
    • 1
  • Seok-Jae Lee
    • 1
  • S. Santhosh Kumar
    • 1
  • Kyooyoung Lee
    • 2
  • B. C. De Cooman
    • 1
  1. 1.Graduate Institute of Ferrous Technology, POSTECHPohangSouth Korea
  2. 2.POSCO Technical Research LaboratoriesGwangyangSouth Korea

Personalised recommendations